Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Information storage and retrieval in a single levitating colloidal particle

Abstract

The binary switch is a basic component of digital information. From phase-change alloys to nanomechanical beams, molecules and atoms, new strategies for controlled bistability hold great interest for emerging technologies. We present a generic methodology for precise and parallel spatiotemporal control of nanometre-scale matter in a fluid, and demonstrate the ability to attain digital functionalities such as switching, gating and data storage in a single colloid, with further implications for signal amplification and logic operations. This fluid-phase bit can be arrayed at high densities, manipulated by either electrical or optical fields, supports low-energy, high-speed operation and marks a first step toward ‘colloidal information’. The principle generalizes to any system where spatial perturbation of a particle elicits a differential response amenable to readout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A nanorod in a bistable potential well.
Figure 2: Volatile electrical operation of a fluid-phase bit.
Figure 3: An arbitrary arrangement of switchable and pre-aligned nanorods subject to an alternating square-wave field of magnitude |E| = 4.5 mV μm–1 (Supplementary Movie 7).
Figure 4: Non-volatile electrical operation of a fluid-phase bit.
Figure 5: Optical gating and information storage.

Similar content being viewed by others

References

  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  3. Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nature Nanotech. 3, 275–279 (2008).

    Article  CAS  Google Scholar 

  4. Gittins, D. I., Bethell, D., Schiffrin, D. J. & Nichols, R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408, 67–69 (2000).

    Article  CAS  Google Scholar 

  5. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    Article  CAS  Google Scholar 

  6. Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    Article  CAS  Google Scholar 

  7. Prakash, M. & Gershenfeld, N. Microfluidic bubble logic. Science 315, 832–835 (2007).

    Article  CAS  Google Scholar 

  8. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  CAS  Google Scholar 

  9. Borshch, V., Shiyanovskii, S. V. & Lavrentovich, O. D. Nanosecond electro-optic switching of a liquid crystal. Phys. Rev. Lett. 111, 107802 (2013).

    Article  Google Scholar 

  10. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nature Mater. 13, 862–866 (2014).

    Article  CAS  Google Scholar 

  11. De Silva, P. A., Gunaratne, N. H. Q. & McCoy, C. P. A molecular photoionic AND gate based on fluorescent signaling. Nature 364, 42–44 (1993).

    Article  Google Scholar 

  12. Krishnan, M., Mojarad, N., Kukura, P. & Sandoghdar, V. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010).

    Article  CAS  Google Scholar 

  13. Krishnan, M. Electrostatic free energy for a confined nanoscale object in a fluid. J. Chem. Phys. 138, 114906 (2013).

    Article  Google Scholar 

  14. Celebrano, M., Rosman, C., Soennichsen, C. & Krishnan, M. Angular trapping of anisometric nano-objects in a fluid. Nano Lett. 12, 5791–5796 (2012).

    Article  CAS  Google Scholar 

  15. Soderman, O. & Jonsson, B. Electro-osmosis: velocity profiles in different geometries with both temporal and spatial resolution. J. Chem. Phys. 105, 10300–10311 (1996).

    Article  Google Scholar 

  16. Perrin, F. The Brownian movement of an ellipsoid—the dielectric dispersion of ellipsoidal molecules. Journal de Physique et le Radium 5, 497–511 (1934).

    Article  CAS  Google Scholar 

  17. Ruijgrok, P. V., Verhart, N. R., Zijlstra, P., Tchebotareva, A. L. & Orrit, M. Brownian fluctuations and heating of an optically aligned gold nanorod. Phys. Rev. Lett. 107, 037401 (2011).

    Article  CAS  Google Scholar 

  18. Bonthuis, D. J. & Netz, R. R. Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity. Langmuir 28, 16049–16059 (2012).

    Article  CAS  Google Scholar 

  19. Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article  Google Scholar 

  20. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    Article  CAS  Google Scholar 

  21. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  Google Scholar 

  22. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    Article  CAS  Google Scholar 

  23. Bagheri, M., Poot, M., Li, M., Pernice, W. P. H. & Tang, H. X. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nature Nanotech. 6, 726–732 (2011).

    Article  CAS  Google Scholar 

  24. Zumofen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M. Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).

    Article  CAS  Google Scholar 

  25. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  CAS  Google Scholar 

  26. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nature Nanotech. 10, 308–312 (2015).

    Article  CAS  Google Scholar 

  27. Ou, J.-Y., Plum, E., Zhang, J. & Zheludev, N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotech. 8, 252–255 (2013).

    Article  CAS  Google Scholar 

  28. Shalin, A. S., Ginzburg, P., Belov, P. A., Kivshar, Y. S. & Zayats, A. V. Nano-opto-mechanical effects in plasmonic waveguides. Laser Photon. Rev. 8, 131–136 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Swiss National Science Foundation and the University of Zurich. Nanofabrication was carried out at the FIRST Center for Micro- and Nanoscience, ETH Zurich.

Author information

Authors and Affiliations

Authors

Contributions

C.J.M. and M.C. performed the experiments and analysed the data. M.K. conceived the project, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Madhavi Krishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 788 kb)

Supplementary information

Supplementary Movie 1 (AVI 6959 kb)

Supplementary information

Supplementary Movie 2 (AVI 20588 kb)

Supplementary information

Supplementary Movie 3 (AVI 13215 kb)

Supplementary information

Supplementary Movie 4 (AVI 14905 kb)

Supplementary information

Supplementary Movie 5 (AVI 12650 kb)

Supplementary information

Supplementary Movie 6 (AVI 20444 kb)

Supplementary information

Supplementary Movie 7 (AVI 5154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myers, C., Celebrano, M. & Krishnan, M. Information storage and retrieval in a single levitating colloidal particle. Nature Nanotech 10, 886–891 (2015). https://doi.org/10.1038/nnano.2015.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing