Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots

Abstract

The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons1. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons2,3,4. The electron population then decays through electron–electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron–phonon scattering on the timescale of a few picoseconds5,6,7,8. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal5,9. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices10,11,12,13,14,15,16,17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental configuration and spectral properties of the plasmonic nanodisks.
Figure 2: Pump–probe reflection data of gold nanodisks.
Figure 3: Pump–probe reflection data of gold nanodisks with a TiO2 spacer layer.
Figure 4: Electromagnetic field and energetic charge distribution calculations.

Similar content being viewed by others

References

  1. Novotny, L. & van Hulst, N. F. Antennas for light. Nature Photon. 5, 83–90 (2011).

    Article  CAS  Google Scholar 

  2. Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).

    Article  CAS  Google Scholar 

  3. Voisin, C., Fatti, N. D., Christofilos, D. & Vallee, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264–2280 (2001).

    Article  CAS  Google Scholar 

  4. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  CAS  Google Scholar 

  5. Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011).

    Article  CAS  Google Scholar 

  6. Pelton, M., Liu, M., Park, S., Scherer, N. F. & Guyot-Sionnest, P. Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation. Phys. Rev. B 73, 155419 (2006).

    Article  Google Scholar 

  7. Park, S., Pelton, M., Liu, M., Guyot-Sionnest, P. & Scherer, N. F. Ultrafast resonant dynamics of surface plasmons in gold nanorods. J. Phys. Chem. C 111, 116–123 (2007).

    Article  CAS  Google Scholar 

  8. Zavelani-Rossi, M. et al. Transient optical response of a single gold nanoantenna: the role of plasmon detuning. ACS Photon. 2, 521–529 (2015).

    Article  CAS  Google Scholar 

  9. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334 (1998).

    Article  CAS  Google Scholar 

  10. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  11. Dani, K. M. et al. Subpicosecond optical switching with a negative index metamaterial. Nano Lett. 9, 3565–3569 (2009).

    Article  CAS  Google Scholar 

  12. Chen, P.-Y. & Alù, A. Optical nanoantenna arrays loaded with nonlinear materials. Phys. Rev. B 82, 235405 (2010).

    Article  Google Scholar 

  13. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  Google Scholar 

  14. Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    Article  CAS  Google Scholar 

  15. Abb, M., Wang, Y., de Groot, C. H. & Muskens, O. L. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nature Commun. 5, 4869 (2014).

    Article  CAS  Google Scholar 

  16. Schumacher, T. et al. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nature Commun. 2, 333 (2011).

    Article  Google Scholar 

  17. Chen, K.-P., Drachev, V. P., Borneman, J. D., Kildishev, A. V. & Shalaev, V. M. Drude relaxation rate in grained gold nanoantennas. Nano Lett. 10, 916–922 (2010).

    Article  CAS  Google Scholar 

  18. Appavoo, K. et al. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14, 1127–1133 (2014).

    Article  CAS  Google Scholar 

  19. Nishijima, Y. et al. Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 3, 1248–1252 (2012).

    Article  CAS  Google Scholar 

  20. Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  21. Morton, S. M., Silverstein, D. W. & Jensen, L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111, 3962–3994 (2011).

    Article  CAS  Google Scholar 

  22. Ciraci, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012).

    Article  CAS  Google Scholar 

  23. Rose, A. et al. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 14, 4797–4802 (2014).

    Article  CAS  Google Scholar 

  24. Mertens, J. et al. Controlling sub-nm gaps in plasmonic dimers using graphene. Nano Lett. 13, 5033–5038 (2013).

    Article  CAS  Google Scholar 

  25. Zhang, H. & Govorov, A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J. Phys. Chem. C 118, 7606–7614 (2014).

    Article  CAS  Google Scholar 

  26. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  27. Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).

    Article  CAS  Google Scholar 

  28. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    Article  CAS  Google Scholar 

  29. Govorov, A., Zhang, H., Demir, V. & Gunko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 9, 85–101 (2014).

    Article  CAS  Google Scholar 

  30. Govorov, A. O. & Zhang, H. Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons. J. Phys. Chem. C 119, 6181–6194 (2015).

    Article  CAS  Google Scholar 

  31. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

Download references

Acknowledgements

This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under contract no. DE-AC02-06CH11357. Work by A.B.F.M. was supported by the Argonne–Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001059. A.O.G. and L.K.K. acknowledge support from the Volkswagen Foundation and the US Army Research Office (W911NF-12-1-0407). The authors thank L. Ocola and R. Divan for their invaluable help with fabrication instruments and processes.

Author information

Authors and Affiliations

Authors

Contributions

H.H. and G.P.W. designed and carried out the experiments. L.K.K., L.V.B. and A.O.G. performed the theoretical modelling and analysis. H.H., A.B.F.M. and D.R. fabricated the samples. H.H., A.O.G. and G.P.W. interpreted the results and wrote the manuscript, with contributions from all the authors.

Corresponding authors

Correspondence to Hayk Harutyunyan, Alexander O. Govorov or Gary P. Wiederrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1824 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, H., Martinson, A., Rosenmann, D. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nature Nanotech 10, 770–774 (2015). https://doi.org/10.1038/nnano.2015.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing