High-frequency nano-optomechanical disk resonators in liquids

Abstract

Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Operation of nano-optomechanical disks in a liquid.
Figure 2: Dissipative and dispersive fluid–structure interactions measured by nano-optomechanical means.
Figure 3: Viscous regime models.
Figure 4: Acoustic regime models.
Figure 5: Interpretation of nano-optomechanical experiments in liquids.

References

  1. 1

    Waggoner, P. S. & Craighead, H. G. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7, 1238–1255 (2007).

  2. 2

    Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

  3. 3

    Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, A. & Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 42, 1287–1311 (2013).

  4. 4

    Ramos, D., Tamayo, J., Mertens, J., Zaballos, A. & Calleja, M. Origin of the response of nanomechanical resonators to bacteria adsorption. J. Appl. Phys. 100, 106105 (2006).

  5. 5

    Hanay, M. S. et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotech. 7, 602–608 (2012).

  6. 6

    Naik, A. K., Hanay, M. S., Hiebert, W. K., Feng, X. L. & Roukes, M. L. Towards single-molecule nanomechanical mass spectrometry. Nature Nanotech. 4, 445–450 (2009).

  7. 7

    Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotech. 7, 300–303 (2012).

  8. 8

    Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

  9. 9

    Eom, K., Park, H. S., Yoon, D. S. & Kwon, T. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys. Rep. 503, 115–163 (2011).

  10. 10

    Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998).

  11. 11

    Lee, J., Shen, W., Payer, K., Burg, T. P. & Manalis, S. R. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett. 10, 2537–2542 (2010).

  12. 12

    Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

  13. 13

    Agache, V., Blanco-Gomez, G., Baleras, F. & Caillat, P. An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid. Lab Chip 11, 2598–2603 (2011).

  14. 14

    Bahl, G. et al. Brillouin cavity optomechanics with microfluidic devices. Nature Commun. 4, 1994 (2013).

  15. 15

    Kim, K. H. et al. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light Sci. Appl. 2, e110 (2013).

  16. 16

    Linden, J., Thyssen, A. & Oesterschulze, E. Suspended plate microresonators with high quality factor for the operation in liquids. Appl. Phys. Lett. 104, 191906 (2014).

  17. 17

    Ramos, D., Mertens, J., Calleja, M. & Tamayo, J. Photothermal self-excitation of nanomechanical resonators in liquids. Appl. Phys. Lett. 92, 173108 (2008).

  18. 18

    Ding, L. et al. High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010).

  19. 19

    Clark, J. R., Hsu, W. T., Abdelmoneum, M. A. & Nguyen, C. T. C. High-Q UHF micromechanical radial-contour mode disk resonators. J. Microelectromechan. Syst. 14, 1298–1310 (2005).

  20. 20

    Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

  21. 21

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  22. 22

    Baker, C. et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Opt. Express 22, 14072–14086 (2014).

  23. 23

    Ding, L. et al. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 98, 113108 (2011).

  24. 24

    Nguyen, D. T. et al. Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield. Appl. Phys. Lett. 103, 241112 (2013).

  25. 25

    Nguyen, D. T. et al. Improved optomechanical disk resonator sitting on a pedestal mechanical shield. New J. Phys. 17, 023016 (2015).

  26. 26

    Baker, C. et al. Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip. Appl. Phys. Lett. 99, 151117 (2011).

  27. 27

    Parrain, D. et al. Damping of optomechanical disks resonators vibrating in air. Appl. Phys. Lett. 100, 242105 (2012).

  28. 28

    Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity (Cambridge Univ. Press, 1906).

  29. 29

    Onoe, M. Contour vibrations of isotropic circular plates. J. Acoust. Soc. Am. 28, 1158–1162 (1956).

  30. 30

    Hosaka, H., Itao, K. & Kuroda, S. Damping characteristics of beam-shaped micro-oscillators. Sens. Actuators A 49, 87–95 (1995).

  31. 31

    Oestreicher, H. L. Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics. J. Acoust. Soc. Am. 23, 707–714 (1951).

  32. 32

    Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

  33. 33

    Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

  34. 34

    Zhu, H. & Lee, J. E. Y. Reversed nonlinear oscillations in lame-mode single-crystal-silicon microresonators. IEEE Electron Device Lett. 33, 1492–1494 (2012).

  35. 35

    Kaajakari, V., Mattila, T., Oja, A. & Seppa, H. Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13, 715–724 (2004).

  36. 36

    Philip, J. & Breazeale, M. A. Third-order elastic-constants and Grüneisen parameters of silicon and germanium between 3 and 300 °K. J. Appl. Phys. 54, 752–757 (1983).

  37. 37

    Olcum, S. et al. Weighing nanoparticles in solution at the attogram scale. Proc. Natl Acad. Sci. USA 111, 1310–1315 (2014).

  38. 38

    Millero, F. J. High precision magnetic float densimeter. Rev. Sci. Instrum. 38, 1441–1444 (1967).

  39. 39

    Taylor, M. A. et al. Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X 4, 0011017 (2014).

Download references

Acknowledgements

E.G. and D.T.N. acknowledge support from the Research in Paris programme of the Ville de Paris and by the French National Research Agency through the NOMADE Project. E.G., C.B., W.H. and I.F. acknowledge support from the European Research Council through the GANOMS Project.

Author information

E.G. and I.F. conceived and designed the experiments, and developed the models. C.B., D.T.N. and W.H. contributed to the fabrication and experimental techniques. C.G. and A.L. grew the epitaxial material. E.G. performed the systematic experiments. All the authors discussed the results and wrote the paper.

Correspondence to I. Favero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1455 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gil-Santos, E., Baker, C., Nguyen, D. et al. High-frequency nano-optomechanical disk resonators in liquids. Nature Nanotech 10, 810–816 (2015). https://doi.org/10.1038/nnano.2015.160

Download citation

Further reading