Abstract
Monolithic semiconductor lasers capable of emitting over the full visible-colour spectrum have a wide range of important applications, such as solid-state lighting, full-colour displays, visible colour communications and multi-colour fluorescence sensing. The ultimate form of such a light source would be a monolithic white laser. However, realizing such a device has been challenging because of intrinsic difficulties in achieving epitaxial growth of the mismatched materials required for different colour emission. Here, we demonstrate a monolithic multi-segment semiconductor nanosheet based on a quaternary alloy of ZnCdSSe that simultaneously lases in the red, green and blue. This is made possible by a novel nanomaterial growth strategy that enables separate control of the composition, morphology and therefore bandgaps of the segments. Our nanolaser can be dynamically tuned to emit over the full visible-colour range, covering 70% more perceptible colours than the most commonly used illuminants.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature 7, 701–706 (2008).
Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335–339 (2012).
Hu, X. P. et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt. Lett. 33, 408–410 (2008).
Fujimoto, Y., Ishii, O. & Yamazaki, M. Multi-color laser oscillation in Pr3+ doped fluoro-aluminate glass fiber pumped by 442.6 nm GaN–semiconductor laser. Electron. Lett. 45, 1301–1302 (2009).
Yamashita, K., Takeuchi, N., Oe, K. & Yanagi, H. Simultaneous RGB lasing from a single-chip polymer device. Opt. Lett. 35, 2451–2453 (2010).
Tang, S. K. Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).
Ding, Y. et al. Nanowires/micorfibre hybrid structure multicolor laser. Opt. Express 17, 21813–21818 (2009).
Chen, S., Zhao, X., Wang, Y., Shi, J. & Liu, D. White light emission with red-green-blue lasing action in a disordered system of nanoparticles. Appl. Phys. Lett. 101, 123508 (2012).
Naderi, N. A. et al. Two-color multi-section quantum dot distributed feedback laser. Opt. Express 18, 27026–27035 (2010).
Neumann, A. et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982–A990 (2011).
Wierer, Jr. J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue laser and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963–993 (2013).
Zhao, J., Jiang, H. & Di, J. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography. Opt. Express 16, 2514–2519 (2008).
Chellappan, K., Erden, E. & Urey, H. Laser-based displays: a review. Appl. Opt. 49, F79–F98 (2010).
Kotani, A. et al. EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal. Methods 4, 58–64 (2012).
Pascu, M. L., Moise, N. & Staicu, A. Tunable dye laser applications in environment pollution monitoring. J. Mol. Struct. 598, 57–64 (2001).
Lin, W. Y. et al. 410 m/500 Mbps WDM visible light communication systems. Opt. Express 20, 9919–9924 (2012).
Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R. & Ciaramella, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 20, B501–B506 (2012).
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).
Huang, Y., Duan, X. F. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).
Kuykendall, T., Ulrich, P., Aloni, S. & Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951–956 (2007).
Yang, Z. et al. On-nanowire spatial band gap design for white light emission. Nano Lett. 11, 5085–5089 (2011).
Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulovic, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).
Kim, T. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).
Fan, F. et al. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semicond. Sci. Technol. 28, 065005 (2013).
Liu, Z. et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013).
Kim, Y. L. et al. CdS/CdSe lateral heterostructure nanobelts by a two-step physical vapor transport method. Nanotechnology 21, 145602 (2010).
VEM. Thin Film Evaporation Guide (Lebow Corporation and Vacuum Engineering & Materials Inc., 2008).
Fang, X. et al. ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011).
Yue, G. H. et al. Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties. J. Cryst. Growth. 293, 428–432 (2006).
Moore, D. & Wang, Z. L. Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater. Chem. 16, 3898–3905 (2006).
Ding, J. X. et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett. 85, 2361–2363 (2004).
Liu, Y. et al. Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005).
Pan, A. L., Liu, R. B., Sun, M. H. & Ning, C. Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).
Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).
Dloczik, L. & Konenkamp, R. Nanostructure transfer in semiconductors by ion exchange. Nano Lett. 3, 651–653 (2003).
Son, H. D., Hughes, M. S., Yin, Y. & Alivisatos, P. A. Cation exchange reactions in ionic nanocrystals. Science 306, 1009 (2004).
Moon, D. G. et al. Chemical transformations of nanostructured materials. Nano Today 6, 186–203 (2011).
Wang, Y. et al. Gas-phase anion exchange towards ZnO/ZnSe heterostructures with intensive visible light emission. J. Mater. Chem. C 2, 2793–2798 (2014).
Deng, Z., Yan, H. & Liu, Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 131, 17744–17745 (2009).
Ichino, K., Onishi, T., Kawakami, Y., Fujita, S. & Fujita, S. Growth of ZnS and ZnCdSSe alloys on GaP using an elemental sulfur source by molecular beam epitaxy. J. Cryst. Growth. 138, 28–34 (1994).
Wang, Z. Y., Lu, Q. F., Fang, X. S., Tian, X. K. & Zhang, L. D. Manipulation of the morphology of CdSe nanostructures: the effect of Si. Adv. Funct. Mater. 16, 661–666 (2006).
Wang, M. & Fei, G. T. Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation. Nanoscale Res. Lett. 4, 1166–1170 (2009).
Tong, L. M. et al. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett. 5, 259–262 (2005).
Zimmler, M. A., Capasso, F., Muller, S. & Ronning, C. Optically pumped nanowire lasers: invited review. Semicond. Sci. Technol. 25, 024001 (2010).
Casperson, L. W. Threshold characteristics of multimode laser oscillators. J. Appl. Phys. 46, 5194–5201 (1975).
International Commission on Illumination. CIE 15 Colorimetry Technical Report, 3rd edn, US Government Document (International Commission on Illumination, 2004).
International Electrotechnical Commission. Multimedia Systems and Equipment—Colour Measurement and Management—Part 2-1 Colour Management—Default RGB Colour Space–sRGB, IEC 61966-2-1 (International Electrotechnical Commission, 1999).
Pan, A., Liu, R., Sun, M. & Ning, C. Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4, 671–680 (2010).
Fan, Z. et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008).
Acknowledgements
The authors thank the Army Research Office for their initial support on nanowire research (award no. W911NF-08-1-0471, under M. Gerhold) that eventually led to this work. The authors acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University, especially D. Wright and A.J. Mardinly for their assistance with the CVD set-up and high-resolution TEM, respectively. F.F. thanks the China Scholar Council for a scholarship, and S.T. thanks the Republic of Turkey's Ministry of National Education for financial support through its fellowship.
Author information
Authors and Affiliations
Contributions
C.Z.N. created the concept, initiated the research on the white lasers, and supervised the overall project. S.T. developed the growth strategy and was responsible for the growth of multi-segment heterostructure nanosheets and the structural and chemical characterizations. F.F. and Z.L. designed and performed the key optical experiments, theoretical calculations and simulations. D.S. carried out the AFM measurements, as well as other optical measurements. All authors participated in regular data analysis, discussed the research results, and were involved in the preparation and various revisions of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 3169 kb)
Rights and permissions
About this article
Cite this article
Fan, F., Turkdogan, S., Liu, Z. et al. A monolithic white laser. Nature Nanotech 10, 796–803 (2015). https://doi.org/10.1038/nnano.2015.149
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2015.149
This article is cited by
-
Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator
Nature Communications (2022)
-
Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level
Science China Chemistry (2022)
-
Electrically controlled white laser emission through liquid crystal/polymer multiphases
Light: Science & Applications (2020)
-
Controllable broadband multicolour single-mode polarized laser in a dye-assembled homoepitaxial MOF microcrystal
Light: Science & Applications (2020)
-
Promising Organic Materials Screened out by Computational Strategy Towards Electrically Pumped Lasers
Chemical Research in Chinese Universities (2020)