Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A monolithic white laser

Abstract

Monolithic semiconductor lasers capable of emitting over the full visible-colour spectrum have a wide range of important applications, such as solid-state lighting, full-colour displays, visible colour communications and multi-colour fluorescence sensing. The ultimate form of such a light source would be a monolithic white laser. However, realizing such a device has been challenging because of intrinsic difficulties in achieving epitaxial growth of the mismatched materials required for different colour emission. Here, we demonstrate a monolithic multi-segment semiconductor nanosheet based on a quaternary alloy of ZnCdSSe that simultaneously lases in the red, green and blue. This is made possible by a novel nanomaterial growth strategy that enables separate control of the composition, morphology and therefore bandgaps of the segments. Our nanolaser can be dynamically tuned to emit over the full visible-colour range, covering 70% more perceptible colours than the most commonly used illuminants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth procedure of multi-segment heterostructure nanosheets.
Figure 2: Structural characterization of a multi-segment heterostructure nanosheet.
Figure 3: Simultaneous multi-colour lasing from a single multi-segment heterostructure nanosheet.
Figure 4: Light-in–light-out curves with multimode lasing fitting.
Figure 5: White and full-colour tunable lasing.
Figure 6: Colour photographs.

Similar content being viewed by others

References

  1. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature 7, 701–706 (2008).

    Article  CAS  Google Scholar 

  2. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335–339 (2012).

    Article  CAS  Google Scholar 

  3. Hu, X. P. et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt. Lett. 33, 408–410 (2008).

    Article  CAS  Google Scholar 

  4. Fujimoto, Y., Ishii, O. & Yamazaki, M. Multi-color laser oscillation in Pr3+ doped fluoro-aluminate glass fiber pumped by 442.6 nm GaN–semiconductor laser. Electron. Lett. 45, 1301–1302 (2009).

    Article  CAS  Google Scholar 

  5. Yamashita, K., Takeuchi, N., Oe, K. & Yanagi, H. Simultaneous RGB lasing from a single-chip polymer device. Opt. Lett. 35, 2451–2453 (2010).

    Article  CAS  Google Scholar 

  6. Tang, S. K. Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).

    Article  CAS  Google Scholar 

  7. Ding, Y. et al. Nanowires/micorfibre hybrid structure multicolor laser. Opt. Express 17, 21813–21818 (2009).

    Article  CAS  Google Scholar 

  8. Chen, S., Zhao, X., Wang, Y., Shi, J. & Liu, D. White light emission with red-green-blue lasing action in a disordered system of nanoparticles. Appl. Phys. Lett. 101, 123508 (2012).

    Article  Google Scholar 

  9. Naderi, N. A. et al. Two-color multi-section quantum dot distributed feedback laser. Opt. Express 18, 27026–27035 (2010).

    Article  Google Scholar 

  10. Neumann, A. et al. Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982–A990 (2011).

    Article  Google Scholar 

  11. Wierer, Jr. J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue laser and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963–993 (2013).

    Article  CAS  Google Scholar 

  12. Zhao, J., Jiang, H. & Di, J. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography. Opt. Express 16, 2514–2519 (2008).

    Article  Google Scholar 

  13. Chellappan, K., Erden, E. & Urey, H. Laser-based displays: a review. Appl. Opt. 49, F79–F98 (2010).

    Article  Google Scholar 

  14. Kotani, A. et al. EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal. Methods 4, 58–64 (2012).

    Article  CAS  Google Scholar 

  15. Pascu, M. L., Moise, N. & Staicu, A. Tunable dye laser applications in environment pollution monitoring. J. Mol. Struct. 598, 57–64 (2001).

    Article  CAS  Google Scholar 

  16. Lin, W. Y. et al. 410 m/500 Mbps WDM visible light communication systems. Opt. Express 20, 9919–9924 (2012).

    Article  Google Scholar 

  17. Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R. & Ciaramella, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 20, B501–B506 (2012).

    Article  CAS  Google Scholar 

  18. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  19. Huang, Y., Duan, X. F. & Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 1, 142–147 (2005).

    Article  CAS  Google Scholar 

  20. Kuykendall, T., Ulrich, P., Aloni, S. & Yang, P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater. 6, 951–956 (2007).

    Article  CAS  Google Scholar 

  21. Yang, Z. et al. On-nanowire spatial band gap design for white light emission. Nano Lett. 11, 5085–5089 (2011).

    Article  CAS  Google Scholar 

  22. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulovic, V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532–2536 (2009).

    Article  CAS  Google Scholar 

  23. Kim, T. et al. Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  24. Fan, F. et al. Simultaneous two-color lasing in a single CdSSe heterostructure nanosheet. Semicond. Sci. Technol. 28, 065005 (2013).

    Article  Google Scholar 

  25. Liu, Z. et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett. 13, 4945–4950 (2013).

    Article  CAS  Google Scholar 

  26. Kim, Y. L. et al. CdS/CdSe lateral heterostructure nanobelts by a two-step physical vapor transport method. Nanotechnology 21, 145602 (2010).

    Article  Google Scholar 

  27. VEM. Thin Film Evaporation Guide (Lebow Corporation and Vacuum Engineering & Materials Inc., 2008).

  28. Fang, X. et al. ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011).

    Article  CAS  Google Scholar 

  29. Yue, G. H. et al. Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties. J. Cryst. Growth. 293, 428–432 (2006).

    Article  CAS  Google Scholar 

  30. Moore, D. & Wang, Z. L. Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater. Chem. 16, 3898–3905 (2006).

    Article  CAS  Google Scholar 

  31. Ding, J. X. et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett. 85, 2361–2363 (2004).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005).

    Article  CAS  Google Scholar 

  33. Pan, A. L., Liu, R. B., Sun, M. H. & Ning, C. Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 131, 9502–9503 (2009).

    Article  CAS  Google Scholar 

  34. Pan, A. et al. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009).

    Article  CAS  Google Scholar 

  35. Dloczik, L. & Konenkamp, R. Nanostructure transfer in semiconductors by ion exchange. Nano Lett. 3, 651–653 (2003).

    Article  CAS  Google Scholar 

  36. Son, H. D., Hughes, M. S., Yin, Y. & Alivisatos, P. A. Cation exchange reactions in ionic nanocrystals. Science 306, 1009 (2004).

    Article  CAS  Google Scholar 

  37. Moon, D. G. et al. Chemical transformations of nanostructured materials. Nano Today 6, 186–203 (2011).

    Article  CAS  Google Scholar 

  38. Wang, Y. et al. Gas-phase anion exchange towards ZnO/ZnSe heterostructures with intensive visible light emission. J. Mater. Chem. C 2, 2793–2798 (2014).

    Article  CAS  Google Scholar 

  39. Deng, Z., Yan, H. & Liu, Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 131, 17744–17745 (2009).

    Article  CAS  Google Scholar 

  40. Ichino, K., Onishi, T., Kawakami, Y., Fujita, S. & Fujita, S. Growth of ZnS and ZnCdSSe alloys on GaP using an elemental sulfur source by molecular beam epitaxy. J. Cryst. Growth. 138, 28–34 (1994).

    Article  CAS  Google Scholar 

  41. Wang, Z. Y., Lu, Q. F., Fang, X. S., Tian, X. K. & Zhang, L. D. Manipulation of the morphology of CdSe nanostructures: the effect of Si. Adv. Funct. Mater. 16, 661–666 (2006).

    Article  CAS  Google Scholar 

  42. Wang, M. & Fei, G. T. Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation. Nanoscale Res. Lett. 4, 1166–1170 (2009).

    Article  CAS  Google Scholar 

  43. Tong, L. M. et al. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett. 5, 259–262 (2005).

    Article  CAS  Google Scholar 

  44. Zimmler, M. A., Capasso, F., Muller, S. & Ronning, C. Optically pumped nanowire lasers: invited review. Semicond. Sci. Technol. 25, 024001 (2010).

    Article  Google Scholar 

  45. Casperson, L. W. Threshold characteristics of multimode laser oscillators. J. Appl. Phys. 46, 5194–5201 (1975).

    Article  CAS  Google Scholar 

  46. International Commission on Illumination. CIE 15 Colorimetry Technical Report, 3rd edn, US Government Document (International Commission on Illumination, 2004).

  47. International Electrotechnical Commission. Multimedia Systems and Equipment—Colour Measurement and Management—Part 2-1 Colour Management—Default RGB Colour Space–sRGB, IEC 61966-2-1 (International Electrotechnical Commission, 1999).

  48. Pan, A., Liu, R., Sun, M. & Ning, C. Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4, 671–680 (2010).

    Article  CAS  Google Scholar 

  49. Fan, Z. et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Army Research Office for their initial support on nanowire research (award no. W911NF-08-1-0471, under M. Gerhold) that eventually led to this work. The authors acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University, especially D. Wright and A.J. Mardinly for their assistance with the CVD set-up and high-resolution TEM, respectively. F.F. thanks the China Scholar Council for a scholarship, and S.T. thanks the Republic of Turkey's Ministry of National Education for financial support through its fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.Z.N. created the concept, initiated the research on the white lasers, and supervised the overall project. S.T. developed the growth strategy and was responsible for the growth of multi-segment heterostructure nanosheets and the structural and chemical characterizations. F.F. and Z.L. designed and performed the key optical experiments, theoretical calculations and simulations. D.S. carried out the AFM measurements, as well as other optical measurements. All authors participated in regular data analysis, discussed the research results, and were involved in the preparation and various revisions of the manuscript.

Corresponding author

Correspondence to C. Z. Ning.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Turkdogan, S., Liu, Z. et al. A monolithic white laser. Nature Nanotech 10, 796–803 (2015). https://doi.org/10.1038/nnano.2015.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing