Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature single-photon generation from solitary dopants of carbon nanotubes

Abstract

On-demand single-photon sources capable of operating at room temperature and the telecom wavelength range of 1,300–1,500 nm hold the key to the realization of novel technologies that span from sub-diffraction imaging to quantum key distribution and photonic quantum information processing1,2,3. Here, we show that incorporation of undoped (6,5) single-walled carbon nanotubes into a SiO2 matrix can lead to the creation of solitary oxygen dopant states capable of fluctuation-free, room-temperature single-photon emission in the 1,100–1,300 nm wavelength range. We investigated the effects of temperature on photoluminescence emission efficiencies, fluctuations and decay dynamics of the dopant states and determined the conditions most suitable for the observation of single-photon emission. This emission can in principle be extended to 1,500 nm by doping of smaller-bandgap single-walled carbon nanotubes4,5. This easy tunability presents a distinct advantage over existing defect centre single-photon emitters (for example, diamond defect centres)1,2,3,6. Our SiO2-encapsulated sample also presents exciting opportunities to apply Si/SiO2-based micro/nano-device fabrication techniques in the development of electrically driven single-photon sources and integration of these sources into quantum photonic devices and networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of photon antibunching from undoped tubes at cryogenic temperatures and exciton localization in oxygen-doped tubes at room temperature.
Figure 2: Schematic of SiO2 matrix-incorporated SWCNTs and their optical properties.
Figure 3: Photon antibunching and carrier dynamic properties of SWCNTs embedded in a SiO2 matrix.
Figure 4: Effects of temperature on photoluminescence emission properties of individual dopant states and probability of observing single-photon generation.

References

  1. Acosta, V. & Hemmer, P. Nitrogen-vacancy centers: physics and applications. MRS Bull. 38, 127–133 (2013).

    Article  CAS  Google Scholar 

  2. Aharonovich, I. et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011).

    Article  Google Scholar 

  3. Gordon, L. et al. Quantum computing with defects. MRS Bull. 38, 802–807 (2013).

    Article  CAS  Google Scholar 

  4. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    Article  CAS  Google Scholar 

  5. Piao, Y. M. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nature Chem. 5, 840–845 (2013).

    Article  CAS  Google Scholar 

  6. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nature Mater. 13, 151–156 (2014).

    Article  CAS  Google Scholar 

  7. Koenraad, P. M. & Flatte, M. E. Single dopants in semiconductors. Nature Mater. 10, 91–100 (2011).

    Article  CAS  Google Scholar 

  8. Miyauchi, Y. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photon. 7, 715–719 (2013).

    Article  CAS  Google Scholar 

  9. Wang, Q. H. & Strano, M. S. Carbon nanotubes: a bright future for defects. Nature Chem. 5, 812–813 (2013).

    Article  CAS  Google Scholar 

  10. Ma, X. et al. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8, 10782–10789 (2014).

    Article  CAS  Google Scholar 

  11. Iwamura, M. et al. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states. ACS Nano 8, 11254–11260 (2014).

    Article  CAS  Google Scholar 

  12. Crochet, J. J. et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12, 5091–5096 (2012).

    Article  CAS  Google Scholar 

  13. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  CAS  Google Scholar 

  14. Wang, F., Dukovic, G., Knoesel, E., Brus, L. E. & Heinz, T. F. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403(R) (2004).

    Article  Google Scholar 

  15. Hoegele, A., Galland, C., Winger, M. & Imamoglu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  16. Walden-Newman, W., Sarpkaya, I. & Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).

    Article  CAS  Google Scholar 

  17. Hofmann, M. S. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nature Nanotech. 8, 502–505 (2013).

    Article  CAS  Google Scholar 

  18. Pályi, A., Struck, P. R., Rudner, M., Flensberg, K. & Burkard, G. Spin–orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108, 206811 (2012).

    Article  Google Scholar 

  19. Wilson-Rae, I., Galland, C., Zwerger, W. & Imamoglu, A. Exciton-assisted optomechanics with suspended carbon nanotubes. New J. Phys. 14, 115003 (2012).

    Article  Google Scholar 

  20. Galland, C. & Imamoğlu, A. All-optical manipulation of electron spins in carbon-nanotube quantum dots. Phys. Rev. Lett. 101, 157404 (2008).

    Article  Google Scholar 

  21. Ohring, M. Materials Science of Thin Films (Academic, 2001).

    Google Scholar 

  22. Hausmann, B. J. M. et al. Integrated diamond networks for quantum nanophotonics. Nano Lett. 12, 1578–1582 (2012).

    Article  CAS  Google Scholar 

  23. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nature Photon. 6, 299–303 (2012).

    Article  CAS  Google Scholar 

  24. Margolin, G., Protasenko, V., Kuno, M. & Barkai, E. Photon counting statistics for blinking CdSe–ZnS quantum dots: a Levy walk process. J. Phys. Chem. B 110, 19053–19060 (2006).

    Article  CAS  Google Scholar 

  25. Berciaud, S., Cognet, L. & Lounis, B. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Phys. Rev. Lett. 101, 077402 (2008).

    Article  Google Scholar 

  26. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    Article  Google Scholar 

  27. Gokus, T. et al. Mono- and biexponential luminescence decays of individual single-walled carbon nanotubes. J. Phys. Chem. C 114, 14025 (2010).

    Article  CAS  Google Scholar 

  28. Avouris, P. & Chen, J. Nanotube electronics and optoelectronics. Mater. Today 9, 46–54 (2006).

    Article  CAS  Google Scholar 

  29. Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech. 5, 27–31 (2010).

    Article  CAS  Google Scholar 

  30. Sun, S. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Naure. Mater. 11, 426–431 (2012).

    Article  CAS  Google Scholar 

  31. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nature Photon. 7, 948–957 (2013).

    Article  CAS  Google Scholar 

  32. Khripin, C. Y., Fagan, J. A. & Zheng, M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J. Am. Chem. Soc. 135, 6822–6825 (2013).

    Article  CAS  Google Scholar 

  33. Fagan, J. A. et al. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 26, 2800–2804 (2014).

    Article  CAS  Google Scholar 

  34. Subbaiyan, N. K., Cambré, S., Parra-Vasquez, A. N., Doorn, S. K. & Duque, J. G. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation. ACS Nano 25, 1619–1628 (2014).

    Article  Google Scholar 

  35. Subbaiyan, N. K. et al. Benchtop aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Res. 8, 1755–1769 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility, and supported by Los Alamos National Laboratory (LANL) Directed Research and Development Funds.

Author information

Authors and Affiliations

Authors

Contributions

H.H., S.K.D. and X.M. conceived and designed the experiment. X.M., under the supervision of H.H., performed all spectroscopy studies and data analysis. N.F.H., under the supervision of S.K.D., performed carbon nanotube separation chemistry. J.K.S.B and X.M. performed electron-beam deposition of SiO2. N.F.H. and S.K.D. assisted in analysis and interpretation of the results. X.M. and H.H. prepared the manuscript with assistance from all other co-authors.

Corresponding authors

Correspondence to Stephen K. Doorn or Han Htoon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Hartmann, N., Baldwin, J. et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nature Nanotech 10, 671–675 (2015). https://doi.org/10.1038/nnano.2015.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing