Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction


The emergence of the field of nanofluidics in the last decade1 has led to the development of important applications including water desalination2, ultrafiltration2 and osmotic energy conversion3. Most applications make use of carbon nanotubes4, boron nitride nanotubes2, graphene5,6 and graphene oxide5. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices2 and energy-efficient water filters1,4. However, although theoretical studies based on molecular dynamics simulations7,8,9 have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations7,8,9 are orders of magnitude higher than those measured experimentally4,10,11,12,13. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: MD simulations showing the nonlinear, oscillatory relationship between the shear stress τ and flow velocity v.
Figure 2: Mechanism of the oscillation in the shear stress.
Figure 3: Enhanced diffusion mechanism.


  1. Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nature Nanotech. 4, 713–720 (2009).

    Article  CAS  Google Scholar 

  2. Shannon, M. A. et al. Science and technology for water purification in the coming decadesie. Nature 452, 301–310 (2008).

    Article  CAS  Google Scholar 

  3. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  Google Scholar 

  4. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  5. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  6. Tocci, G., Joly, L. & Michaelides, A. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872–6877 (2014).

    Article  CAS  Google Scholar 

  7. Kannam, S. K., Todd, B. D., Hansen, J. S. & Daivis, P. J. How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701 (2013).

    Article  Google Scholar 

  8. Ma, M. D. et al. Friction of water slipping in carbon nanotubes. Phys. Rev. E 83, 036316 (2011).

    Article  Google Scholar 

  9. Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  CAS  Google Scholar 

  10. Qin, X. C., Yuan, Q. Z., Zhao, Y. P., Xie, S. B. & Liu, Z. F. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11, 2173–2177 (2011).

    Article  CAS  Google Scholar 

  11. Majumder, M., Chopra, N. & Hinds, B. J. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011).

    Article  CAS  Google Scholar 

  12. Cao, D. et al. Electronic sensitivity of carbon nanotubes to internal water wetting. ACS Nano 5, 3113–3119 (2011).

    Article  CAS  Google Scholar 

  13. Whitby, M., Cagnon, L., Thanou, M. & Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8, 2632–2637 (2008).

    Article  CAS  Google Scholar 

  14. Bocquet, L. & Barrat, J. L. On the Green–Kubo relationship for the liquid–solid friction coefficient. J. Chem. Phys. 139, 044704 (2013).

    Article  Google Scholar 

  15. Hanasaki, I. & Nakatani, A. Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J. Chem. Phys. 124, 144708 (2006).

    Article  Google Scholar 

  16. Huang, D. M., Sendner, C., Horinek, D., Netz, R. R. & Bocquet, L. Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101, 226101 (2008).

    Article  Google Scholar 

  17. Weaver, W. Jr, Timoshenko, S. P. & Young, D. H. Vibration Problems in Engineering 5th edn (Wiley-Interscience, 1990).

    Google Scholar 

  18. Wang, L. F., Zheng, Q. S., Liu, J. Z. & Jiang, Q. Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95, 105501 (2005).

    Article  Google Scholar 

  19. Bahar, I., Lezon, T. R., Bakan, A. & Shrivastava, I. H. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev. 110, 1463–1497 (2010).

    Article  CAS  Google Scholar 

  20. Urbakh, M. & Daikhin, L. Roughness effect on the frequency of a quartz-crystal resonator in contact with a liquid. Phys. Rev. B 49, 4866–4870 (1994).

    Article  CAS  Google Scholar 

  21. Tshiprut, Z., Filippov, A. E. & Urbakh, M. Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005).

    Article  CAS  Google Scholar 

  22. Feller, W. An Introduction to Probability Theory and its Applications 3rd edn (Wiley, 1968).

    Google Scholar 

  23. Detcheverry, F. & Bocquet, L. Thermal fluctuations in nanofluidic transport. Phys. Rev. Lett. 109, 024501 (2012).

    Article  Google Scholar 

  24. Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotech. 8, 912–916 (2013).

    Article  CAS  Google Scholar 

  25. Krasheninnikov, A. V. & Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nature Mater. 6, 723–733 (2007).

    Article  CAS  Google Scholar 

  26. Iijima, S., Brabec, C., Maiti, A. & Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996).

    Article  CAS  Google Scholar 

  27. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article  CAS  Google Scholar 

  28. Mayo, S. L., Olafson, B. D. & Goddard, W. A. III . Dreiding—a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  29. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  30. Computing for Clean Water Project Statistics;

Download references


The authors thank the thousands of volunteers who have contributed to the Computing for Clean Water project for their enthusiastic support. The authors thank A. Michaelides and G. Aeppli for discussions. This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations



F.G., M.M. and Q.S.Z. proposed and designed the project. M.M. performed MD simulations, data analysis and theoretical analysis. F.G. coordinated the project and participated in data analysis. L.M.S. participated in the design of the MD simulations set-up and provided key resources for test simulations and data analysis. M.U. performed theoretical analysis and participated in data analysis. M.M., F.G., M.U. and Q.S.Z. wrote the manuscript. L.M.S., S.W., J.Z.L. and Y.L.L. participated in data analysis and manuscript preparation.

Corresponding authors

Correspondence to François Grey or Quanshui Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1401 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Grey, F., Shen, L. et al. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nature Nanotech 10, 692–695 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research