Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial

Abstract

Hexagonal boron nitride (h-BN) is a natural hyperbolic material1, in which the dielectric constants are the same in the basal plane (εt ≡ εx = εy) but have opposite signs (εtεz < 0) in the normal plane (εz)1,2,3,4. Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons1,2,5—collective modes that originate from the coupling between photons and electric dipoles6 in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN1,2,7. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure8 composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene9,10,11,12,13 with hyperbolic phonon polaritons in h-BN1,2, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon–phonon polaritons. The hyperbolic plasmon–phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5–2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon–phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial14 as the resulting properties of these devices are not present in its constituent elements alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the hybridized hyperbolic response in a graphene/h-BN metastructure.
Figure 2: Modification of type II hyperbolic phonon polaritons in a graphene/h-BN metastructure.
Figure 3: Tuning of the graphene/h-BN polariton wavelength by electrostatic gating and varying the metastructure thickness.

Similar content being viewed by others

References

  1. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  2. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    Article  CAS  Google Scholar 

  3. Guo, Y., Newman, W., Cortes, C. L. & Jacob, Z. Applications of hyperbolic metamaterial substrates. Adv. Optoelectron. 2012, 452502 (2012).

    Article  Google Scholar 

  4. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nature Photon. 7, 948–957 (2013).

    Article  CAS  Google Scholar 

  5. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. 6, 6963 (2015).

    Article  CAS  Google Scholar 

  6. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  7. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Commun. 5, 4782 (2014).

    Article  CAS  Google Scholar 

  8. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  9. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  10. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  11. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  12. Fang, Z. et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014).

    Article  CAS  Google Scholar 

  13. Gerber, J. A., Berweger, S., O'Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 113, 055502 (2014).

    Article  Google Scholar 

  14. Cai, W. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

    Book  Google Scholar 

  15. Fiori, G. et al. Electronics based on two-dimensional materials. Nature Nanotech. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  16. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  17. Brar, V. W. et al. Hybrid surface-phonon–plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    Article  CAS  Google Scholar 

  18. Xu, X. G. et al. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. ACS Nano 8, 11305–11312 (2014).

    Article  CAS  Google Scholar 

  19. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater. 14, 421–425 (2015).

    Article  CAS  Google Scholar 

  20. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  CAS  Google Scholar 

  21. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  Google Scholar 

  22. Kumar, A., Low, T., Fung, K. H., Avouris, P. & Fang, N. X. Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett. 15, 3172–3180 (2015).

    Article  CAS  Google Scholar 

  23. Hwang, E. H., Sensarma, R. & Das Sarma, S. Plasmon–phonon coupling in graphene. Phys. Rev. B 82, 195406 (2010).

    Article  Google Scholar 

  24. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  25. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  CAS  Google Scholar 

  26. Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging. Preprint at http://arXiv.org/abs/1502.04093 (2015).

  27. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nature Mater. 6, 946–950 (2007).

    Article  CAS  Google Scholar 

  28. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article  Google Scholar 

  29. Smith, D. R., Schurig, D., Mock, J. J., Kolinko, P. & Rye, P. Partial focusing of radiation by a slab of indefinite media. Appl. Phys. Lett. 84, 2244–2246 (2004).

    Article  CAS  Google Scholar 

  30. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  CAS  Google Scholar 

  31. Kadic, M. et al. Transformation plasmonics. Nanophotonics 1, 51 (2012).

    Article  Google Scholar 

  32. Iorsh, I. V., Mukhin, I. S., Shadrivov, I. V., Belov, P. A. & Kivshar, Y. S. Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87, 075416 (2013).

    Article  Google Scholar 

  33. Goos, F. & Hänchen, H. Ein neuer und fundamentaler Versuch zur Totalreflexion. Ann. Phys. 436, 333–346 (1947).

    Article  Google Scholar 

Download references

Acknowledgements

Work at the University of California, San Diego (UCSD), on optical phenomena in vdW materials is supported by DOE-BES DE-FG02-00ER45799 and the Moore Foundation. Research at UCSD on metamaterials and the development of nano-infrared instrumentation is supported by the Air Force Office of Scientific Research (AFOSR), the University of California Office of The President and the Office of Naval Research. P.J-H. acknowledges support from the AFOSR (grant no. FA9550-11-1-0225).

Author information

Authors and Affiliations

Authors

Contributions

S.Z. provided the CVD graphene samples used to collect data in Figs 2 and  3. All other authors were involved in designing the research, performing the research and writing the manuscript.

Corresponding author

Correspondence to D. N. Basov.

Ethics declarations

Competing interests

F.K. is one of the cofounders of Neaspec and Lasnix, producer of the s-SNOM and infrared source used in this work. All other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Ma, Q., Liu, M. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotech 10, 682–686 (2015). https://doi.org/10.1038/nnano.2015.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing