Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rectification of electronic heat current by a hybrid thermal diode

Abstract

Thermal diodes1,2—devices that allow heat to flow preferentially in one direction—are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection3 and quantum information4, or in emerging fields such as phononics5,6,7 and coherent caloritronics8,9,10. However, both in terms of phononic11,12,13 and electronic heat conduction14 (the latter being the focus of this work), their experimental realization remains very challenging15. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to  = Jfw/Jrev  1 or  1. So far,  ≈ 1.07–1.4 has been reported in phononic devices16,17,18, and  ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures19. Here, we show that unprecedentedly high ratios of  ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors20,21,22. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Thermal diode implementation.
Figure 2: Thermal diode response and modelling.
Figure 3: Thermal diode performance.
Figure 4: Heat rectification mechanisms.

References

  1. Starr, C. The copper oxyde rectifier. J. Appl. Phys. 7, 15–19 (1936).

    CAS  Google Scholar 

  2. Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).

    Article  Google Scholar 

  3. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  Google Scholar 

  4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).

    Google Scholar 

  5. Li, N. et al. Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    Article  Google Scholar 

  6. Dubi, Y. & Di Ventra, M. Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).

    CAS  Article  Google Scholar 

  7. Wang, L. & Li, B. Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101, 267203 (2008).

    Article  Google Scholar 

  8. Giazotto, F. & Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 492, 401–405 (2012).

    Article  Google Scholar 

  9. Martínez-Pérez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nature Commun. 5, 3579 (2014).

    Article  Google Scholar 

  10. Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).

    Article  Google Scholar 

  11. Wu, L-A. & Segal, D. Sufficient conditions for thermal rectification in hybrid quantum structures. Phys. Rev. Lett. 102, 095503 (2009).

    Article  Google Scholar 

  12. Li, B., Wang, L. & Casati, G. Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006).

    Article  Google Scholar 

  13. Li, B., Lan, J. & Wang, L. Interface thermal resistance between dissimilar anharmonic lattices. Phys. Rev. Lett. 95, 104302 (2005).

    Article  Google Scholar 

  14. Kuo, D. M. T. & Chang, Y. C. Thermoelectric and thermal rectification properties of quantum dot junctions. Phys. Rev. B 81, 205321 (2010).

    Article  Google Scholar 

  15. Roberts, N. A. & Walker, D. G. A review of thermal rectification observations and models in solid materials. Int. J. Therm. Sci. 50, 648–662 (2011).

    Article  Google Scholar 

  16. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article  Google Scholar 

  17. Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).

    Article  Google Scholar 

  18. Tian, H. et al. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2, 523 (2012).

    Article  Google Scholar 

  19. Scheibner, R. et al. Quantum dot as thermal rectifier. New J. Phys. 10, 083016 (2008).

    Article  Google Scholar 

  20. Martínez-Pérez, M. J. & Giazotto, F. Efficient phase-tunable Josephson thermal rectifier. Appl. Phys. Lett. 102, 182602 (2013).

    Article  Google Scholar 

  21. Giazotto, F. & Bergeret, F. S. Thermal rectification of electrons in hybrid normal metal–superconductor nanojunctions. Appl. Phys. Lett. 103, 242602 (2013).

    Article  Google Scholar 

  22. Fornieri, A., Martínez-Pérez, M. J. & Giazotto, F. A normal metal tunnel-junction heat diode. Appl. Phys. Lett. 104, 183108 (2014).

    Article  Google Scholar 

  23. Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).

    CAS  Article  Google Scholar 

  24. Taskinen, L. J. & Maasilta, I. J. Improving the performance of hot-electron bolometers and solid state coolers with disordered alloys. Appl. Phys. Lett. 89, 143511 (2006).

    Article  Google Scholar 

  25. Dynes, R. C., Narayanamurty, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    CAS  Article  Google Scholar 

  26. Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).

    Article  Google Scholar 

  27. Pekola, J. P. et al. Limitations in cooling electrons using normal-metal- superconductor tunnel junctions. Phys. Rev. Lett. 92, 056804 (2004).

    CAS  Article  Google Scholar 

  28. Pascal, L. M. A., Courtois, H. & Hekking, F. W. J. Circuit approach to photonic heat transport. Phys. Rev. B 83, 125113 (2011).

    Article  Google Scholar 

  29. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    CAS  Article  Google Scholar 

  30. Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Altimiras for useful comments. The Marie Curie Initial Training Action (ITN) Q-NET 264034, the Italian Ministry of Defense through PNRM project TERASUPER, and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187-COMANCHE are acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M-P. fabricated the samples. M.J.M-P. and A.F. performed the measurements, analysed the data and carried out simulations. F.G. conceived the experiment. M.J.M-P., A.F. and F.G. discussed the results and implications equally at all stages, and wrote the manuscript.

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 328 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Pérez, M., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotech 10, 303–307 (2015). https://doi.org/10.1038/nnano.2015.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.11

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research