Bright visible light emission from graphene

Abstract

Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics1,2. In particular, the strong light–matter interaction in graphene3 has allowed for the development of state-of-the-art photodetectors4,5, optical modulators6 and plasmonic devices7. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range8,9. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced10. Hot electrons (2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency8,9. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Bright visible light emission from electrically biased suspended graphene.
Figure 2: Spectra of visible light emitted from electrically biased suspended graphene.
Figure 3: Simulated spectra of radiation from electrically biased suspended graphene.
Figure 4: Electrical and thermal transport in electrically biased suspended graphene.

References

  1. 1

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Bao, Q. & Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Gan, X. et al. Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626–5631 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Berciaud, S. et al. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (2010).

    Article  Google Scholar 

  9. 9

    Freitag, M., Chiu, H-Y., Steiner, M., Perebeinos, V. & Avouris, P. Thermal infrared emission from biased graphene. Nature Nanotech. 5, 497–501 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Dorgan, V. E., Behnam, A., Conley, H. J., Bolotin, K. I. & Pop, E. High-field electrical and thermal transport in suspended graphene. Nano Lett. 13, 4581–4586 (2013).

    Article  Google Scholar 

  11. 11

    Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  Google Scholar 

  12. 12

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2012).

    Article  Google Scholar 

  13. 13

    Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).

    Article  Google Scholar 

  14. 14

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Chae, D-H., Krauss, B., von Klitzing, K. & Smet, J. H. Hot phonons in an electrically biased graphene constriction. Nano Lett. 10, 466–471 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Bae, M-H., Ong, Z-Y., Estrada, D. & Pop, E. Imaging, simulation, and electrostatic control of power dissipation in graphene devices. Nano Lett. 10, 4787–4793 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    Article  Google Scholar 

  18. 18

    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Chen, J. H. et al. Charged-impurity scattering in graphene. Nature Phys. 4, 377–381 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Kim, Y. D. et al. Focused-laser-enabled p–n junctions in graphene field-effect transistors. ACS Nano 7, 5850–5857 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Kim, Y. S. et al. Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. ACS Nano 8, 2230–2236 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Qi, Z. J. et al. Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride. Small 11, 1402–1408 (2014).

    Article  Google Scholar 

  26. 26

    Park, J-S., Chae, H., Chung, H. K. & Lee, S. I. Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011).

    Article  Google Scholar 

  27. 27

    Yoon, D. et al. Interference effect on Raman spectrum of graphene on SiO2/Si. Phys. Rev. B 80, 125422 (2009).

    Article  Google Scholar 

  28. 28

    Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007).

    Article  Google Scholar 

  29. 29

    Barreiro, A., Börrnert, F., Rümmeli, M. H., Büchner, B. & Vandersypen, L. M. K. Graphene at high bias: cracking, layer by layer sublimation, and fusing. Nano Lett. 12, 1873–1878 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Article  Google Scholar 

  31. 31

    Mann, D., Pop, E., Cao, J., Wang, Q. & Goodson, K. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. B 110, 1502–1505 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Bonini, N., Lazzeri, M., Marzari, N. & Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 99, 176802 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Kim, D-H. Chae, J-M. Ryu and A.M. van der Zande for discussions. This work was supported by the Korea Research Institute of Standards and Science under the auspices of the project ‘Convergent Science and Technology for Measurements at the Nanoscale’ (15011053), grants from the National Research Foundation of Korea (2014-023563, NRF-2008-0061906, NRF-2013R1A1A1076141, NRF-2012M3C1A1048861, 2011-0017605, BSR-2012R1A2A2A01045496 and NMTD-2012M3A7B4049888) funded by the Korea government (MSIP), a grant (2011-0031630) from the Center for Advanced Soft Electronics through the Global Frontier Research Program of MSIP, the Priority Research Center Program (2012-0005859), a grant (2011-0030786) from the Center for Topological Matters at POSTECH, the NSF (DMR-1122594), AFOSR (FA95550-09-0705), ONR (N00014-13-1-0662 and N00014-13-1-0464), Army Research Office (ARO) grant W911NF-13-1-0471 and the Qualcomm Innovation Fellowship (QInF) 2013. Computational resources were provided by the Aspiring Researcher Program through Seoul National University.

Author information

Affiliations

Authors

Contributions

Y.D.K., Y.C., H.K., Y.L., D.Y., T.F.H. and H.C. performed the measurements. H.K., Y.D.K., P.K., S.L., J.H. and S.W.L. fabricated the devices. Y.S.K., S.L., J.H. and S-H.C. grew the CVD graphene. S-N.P. and Y.S.Y. provided calibrated black-body sources. M-H.B., V.E.D. and E.P. performed the simulations using the electro-thermal model. J.H.R. and C-H.P. developed a theoretical model for thermal emission beyond the Planck radiation formula and J.H.R. performed simulations based on it. M-H.B., Y.D.K. and Y.D.P. conceived the experiments. All authors discussed the results.

Corresponding authors

Correspondence to Young Duck Kim or Myung-Ho Bae or Yun Daniel Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6203 kb)

Supplementary information

Supplementary Movie 1 (MP4 9320 kb)

Supplementary information

Supplementary Movie 2 (MP4 1122 kb)

Supplementary information

Supplementary Movie 3 (MP4 6107 kb)

Supplementary information

Supplementary Movie 4 (MP4 4208 kb)

Supplementary information

Supplementary Movie 5 (MP4 4585 kb)

Supplementary information

Supplementary Movie 6 (MP4 5919 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, H., Cho, Y. et al. Bright visible light emission from graphene. Nature Nanotech 10, 676–681 (2015). https://doi.org/10.1038/nnano.2015.118

Download citation

Further reading