Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Syringe-injectable electronics

Subjects

Abstract

Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syringe-injectable electronics.
Figure 2: Imaging of the mesh electronics structure in needle constrictions.
Figure 3: Syringe injection of mesh electronics into 3D synthetic structures.
Figure 4: Syringe-injectable electronics into an in vivo biological system.

Similar content being viewed by others

References

  1. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  2. Timko, B. P. et al. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9, 914–918 (2009).

    Article  CAS  Google Scholar 

  3. Kim, D. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  4. Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nature Mater. 12, 899–904 (2013).

    Article  CAS  Google Scholar 

  5. Tee, B. C. K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825–832 (2012).

    Article  CAS  Google Scholar 

  6. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    Article  CAS  Google Scholar 

  7. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nature Commun. 3, 763 (2012).

    Article  Google Scholar 

  8. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  CAS  Google Scholar 

  9. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nature Photon. 6, 391–397 (2012).

    Article  CAS  Google Scholar 

  10. Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nature Commun. 4, 1980 (2013).

    Article  Google Scholar 

  11. Kim, D. et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater. 10, 316–323 (2011).

    Article  CAS  Google Scholar 

  12. Rousche, P. J. et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48, 361–371 (2001).

    Article  CAS  Google Scholar 

  13. Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  Google Scholar 

  14. Kane, M. J., Breen, P. P., Quondamatteo, F. & Olaighin, G. BION microstimulators: a case study in the engineering of an electronic implantable medical device. Med. Eng. Phys. 33, 7–16 (2011).

    Article  Google Scholar 

  15. Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Mater. 11, 986–994 (2012).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl Acad. Sci. USA 110, 6694–6699 (2013).

    Article  CAS  Google Scholar 

  17. Kim, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).

    Article  CAS  Google Scholar 

  18. Kim, D. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl Acad. Sci. USA 109, 19910–19915 (2012).

    Article  CAS  Google Scholar 

  19. Yim, M. & Paik, K. The contact resistance and reliability of anisotropically conductive film (ACF). IEEE Trans. Adv. Packag. 22, 166–173 (1999).

    Article  Google Scholar 

  20. Stieglitz, T. in Handbook of Neural Activity Measurement (eds Brette, R. & Destexhe, A.) 8–43 (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  21. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  CAS  Google Scholar 

  22. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  23. Bilston, L. E. Neural Tissue Biomechanics (Springer, 2011).

    Book  Google Scholar 

  24. Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 3, 93ra67 (2011).

    Article  CAS  Google Scholar 

  25. Bible, E. et al. Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nature Protoc. 4, 1440–1453 (2009).

    Article  CAS  Google Scholar 

  26. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nature Protoc. 1, 3166–3173 (2006).

    Article  CAS  Google Scholar 

  27. Alvarez-Buylla, A. & Garcia-Verdugo, J. M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).

    Article  CAS  Google Scholar 

  28. Goldman, S. Stem and progenitor cell-based therapy of the human central nervous system. Nature Biotechnol. 23, 862–871 (2005).

    Article  CAS  Google Scholar 

  29. van Dommelen, J. A. W., van der Sande, T. P. J., Hrapko, M. & Peters, G. W. M. Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3, 158–166 (2010).

    Article  CAS  Google Scholar 

  30. Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    Article  CAS  Google Scholar 

  31. Mercanzini, A. et al. Demonstration of cortical recording using novel flexible polymer neural probes. Sens. Actuat. A 143, 90–96 (2008).

    Article  CAS  Google Scholar 

  32. Symour, J. P. & Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28, 3594–3607 (2007).

    Article  Google Scholar 

  33. Yoshida Kozai, T. D. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Mater. 11, 1065–1073 (2012).

    Article  Google Scholar 

  34. Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81–89 (2005).

    Article  Google Scholar 

  35. Navarro, X. et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

    Article  Google Scholar 

  36. Buzsaki, G. et al. Hippocampal network patterns of activity in the mouse. Neuroscience 116, 201–211 (2003).

    Article  CAS  Google Scholar 

  37. Agarwal, G. et al. Spatially distributed local fields in the hippocampus encode rat position. Science 344, 626–630 (2014).

    Article  CAS  Google Scholar 

  38. Morris, G., Arkadir, D., Nevet, A., Vaadia, E. & Bergman, H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43, 133–143 (2004).

    Article  CAS  Google Scholar 

  39. Zhang, J. et al. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural Eng. 6, 055007 (2009).

    Article  Google Scholar 

  40. Zhou, W. et al. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 14, 1614–1619 (2014).

    Article  CAS  Google Scholar 

  41. Alivisatos, P. A. et al. The brain activity map. Science 339, 1284–1285 (2013).

    Article  CAS  Google Scholar 

  42. Almquist, B. D. & Melosh, N. A. Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl Acad. Sci. USA 107, 5815–5820 (2010).

    Article  CAS  Google Scholar 

  43. Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R. & Najafi, K. Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92, 76–97 (2004).

    Article  CAS  Google Scholar 

  44. Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 831–834 (2010).

    Article  Google Scholar 

  45. Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nature Nanotech. 7, 174–179 (2012).

    Article  CAS  Google Scholar 

  46. Spira, M. et al. Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotech. 8, 83–94 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J.L. Huang for in vivo scaffold fabrication. C.M.L. acknowledges support from a National Institutes of Health Director's Pioneer Award, the Air Force Office of Scientific Research and the Star Family Fund.

Author information

Authors and Affiliations

Authors

Contributions

J.L., T.F., Z.C. and C.M.L. designed the experiments. J.L., T.F., Z.C., G.H., T.Z., M.D. and Z.J. performed the experiments. L.J. and Z.S. performed FEM analysis. J.L., T.F., Z.C. and C.M.L. analysed the data and wrote the manuscript. J.L., T.F., Z.C., G.H., T.Z., L.J., M.D., Z.J., P.K., C.X., Z.S., Y.F. and C.M.L. discussed manuscript.

Corresponding authors

Correspondence to Ying Fang or Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Fu, TM., Cheng, Z. et al. Syringe-injectable electronics. Nature Nanotech 10, 629–636 (2015). https://doi.org/10.1038/nnano.2015.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing