Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectral mapping of thermal conductivity through nanoscale ballistic transport

Subjects

Abstract

Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrafast optical spectroscopy and size-dependent thermal transport.
Figure 2: Size-dependent heating using hybrid nanostructures and thermoreflectance measurements.
Figure 3: Size-dependent effective thermal conductivity k/kbulk of silicon and phonon mode suppression.
Figure 4: Reconstruction of the spectral distribution of the thermal conductivity.

Similar content being viewed by others

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Quadrennial Technology Review (US Department of Energy, 2011); available at http://energy.gov/qtr

  3. Majumdar, A. Materials science. Thermoelectricity in semiconductor nanostructures. Science 303, 777–778 (2004).

    Article  CAS  Google Scholar 

  4. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  5. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  6. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  CAS  Google Scholar 

  7. Lee, W. et al. Heat dissipation in atomic-scale junctions. Nature 498, 209–212 (2013).

    Article  CAS  Google Scholar 

  8. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  CAS  Google Scholar 

  9. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article  CAS  Google Scholar 

  10. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  11. Dames, C. Thermal materials: pulling together to control heat flow. Nature Nanotech. 7, 82–83 (2012).

    Article  CAS  Google Scholar 

  12. Singh, D. J. Nanostructuring and more. Nature Mater. 7, 616–617 (2008).

    Article  CAS  Google Scholar 

  13. Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  14. Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Mater. 10, 532–538 (2011).

    Article  CAS  Google Scholar 

  15. Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011).

    Article  CAS  Google Scholar 

  16. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  Google Scholar 

  17. Pop, E., Sinha, S. & Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).

    Article  CAS  Google Scholar 

  18. Heremans, J. P., Dresselhaus, M. S., Bell, L. E. & Morelli, D. T. When thermoelectrics reached the nanoscale. Nature Nanotech. 8, 471–473 (2013).

    Article  CAS  Google Scholar 

  19. Marconnet, A. M., Panzer, M. A. & Goodson, K. E. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev. Mod. Phys. 85, 1295–1326 (2013).

    Article  CAS  Google Scholar 

  20. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classic Texts in the Physical Sciences, 1960).

    Google Scholar 

  21. Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).

    Article  Google Scholar 

  22. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phy. Lett. 91, 231922 (2007).

    Article  Google Scholar 

  23. Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).

    Article  Google Scholar 

  24. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011).

    Article  Google Scholar 

  25. Lindsay, L., Broido, D. A. & Reinecke, T. L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013).

    Article  CAS  Google Scholar 

  26. Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nature Mater. 10, 614–619 (2011).

    Article  CAS  Google Scholar 

  27. Ma, J. et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2 . Nature Nanotech. 8, 445–451 (2013).

    Article  CAS  Google Scholar 

  28. Dames, C. & Chen, G. Thermoelectrics Handbook, Macro to Nano (ed. Rowe, D. M.) Ch. 42 (CRC Press, 2006).

  29. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Article  CAS  Google Scholar 

  30. Chen, G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. J. Heat Transfer 118, 539–545 (1996).

    Article  CAS  Google Scholar 

  31. Sverdrup, P. G., Sinha, S., Asheghi, M., Uma, S. & Goodson, K. E. Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 78, 3331 (2001).

    Article  CAS  Google Scholar 

  32. Minnich, A. J. et al. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011).

    Article  CAS  Google Scholar 

  33. Koh, Y. & Cahill, D. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).

    Article  Google Scholar 

  34. Regner, K. T., Majumdar, S. & Malen, J. A. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions. Rev. Sci. Instrum. 84, 064901 (2013).

    Article  CAS  Google Scholar 

  35. Johnson, J. A. et al. Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013).

    Article  Google Scholar 

  36. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater. 9, 26–30 (2009).

    Article  Google Scholar 

  37. Schmidt, A. J., Chen, X. & Chen, G. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump–probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Article  Google Scholar 

  38. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004).

    Article  CAS  Google Scholar 

  39. He, Y., Donadio, D. & Galli, G. Heat transport in amorphous silicon: interplay between morphology and disorder. Appl. Phys. Lett. 98, 144101 (2011).

    Article  Google Scholar 

  40. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  CAS  Google Scholar 

  41. Péraud, J-P. M. & Hadjiconstantinou, N. G. Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys. Rev. B 84, 205331 (2011).

    Article  Google Scholar 

  42. Maznev, A. A., Johnson, J. A. & Nelson, K. A. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 84, 195206 (2011).

    Article  Google Scholar 

  43. Minnich, A. J. Determining phonon mean free paths from observations of quasiballistic thermal transport. Phys. Rev. Lett. 109, 205901 (2012).

    Article  CAS  Google Scholar 

  44. Collins, K. C. et al. Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation. J. Appl. Phys. 114, 104302 (2013).

    Article  Google Scholar 

  45. Ding, D., Chen, X. & Minnich, A. J. Radial quasiballistic transport in time-domain thermoreflectance studied using Monte Carlo simulations. Appl. Phys. Lett. 104, 143104 (2014).

    Article  Google Scholar 

  46. Zeng, L. & Chen, G. Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate. J. Appl. Phys. 116, 064307 (2014).

    Article  Google Scholar 

  47. Wilson, R. B. & Cahill, D. G. Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nature Commun. 5, 5075 (2014).

    Article  CAS  Google Scholar 

  48. Goodson, K. E. & Ju, Y. S. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999).

    Article  CAS  Google Scholar 

  49. Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article  Google Scholar 

  50. Hu, Y., Kuemmeth, F., Lieber, C. M. & Marcus, C. M. Hole spin relaxation in Ge–Si core–shell nanowire qubits. Nature Nanotech. 7, 47–50 (2012).

    Article  CAS  Google Scholar 

  51. Grant, M. & Boyd, S. in Recent Advances in Learning and Control (eds Blondel, V., Boyd, S. & Kimura, H.) (Lecture Notes in Control and Information Sciences, Springer-Verlag, 2008).

    Google Scholar 

  52. Grant, M. & Boyd, S. CVX: Matlab software for disciplined convex programming, version 2.0 beta (CVX Research, 2013); available at http://cvxr.com/cvx

Download references

Acknowledgements

The authors thank J. Garg for providing DFT data on Si0.992Ge0.008, and D. Broido, N.G. Hadjiconstantinou, A. Marconnet, J.K. Tong, J-P. Peraud, W. Dai, A. Maznev, K. Nelson, J. Cuffe, M. Luckyanova and K. Collins for discussions. This material is based on work supported as part of the ‘Solid State Solar-Thermal Energy Conversion Center (S3TEC)’, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (grant no. DE-SC0001299/DE-FG02-09ER46577). Y.H. is partially supported by the Battelle/MIT Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and G.C. developed the concept. Y.H. prepared the samples and performed the experiments. L.Z. performed the Monte Carlo simulation. Y.H. performed the numerical calculations on convex optimizations. All authors discussed the results and commented on the manuscript. G.C. directed the research.

Corresponding author

Correspondence to Gang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zeng, L., Minnich, A. et al. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nature Nanotech 10, 701–706 (2015). https://doi.org/10.1038/nnano.2015.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing