Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Spin–orbit torques in action

The spin–orbit interaction can generate torques that act on the magnetization of a ferromagnet. Here we examine recent experimental insights into spin–orbit torques, which have generated competing explanations and differing opinions over their potential application in memory devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rashba spin–orbit coupling.
Figure 2: Action of dissipative and reactive torques.
Figure 3: Torques on the magnetization.

References

  1. Fert, A. Rev. Mod. Phys. 80, 1517–1530 (2008).

    Article  CAS  Google Scholar 

  2. Berger, L. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  3. Slonczewski, J. C. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  4. Ralph, D. C. & Stiles, M. D. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article  CAS  Google Scholar 

  5. Brataas, A., Kent, A. D. & Ohno, H. Nature Mater. 11, 372–381 (2012).

    Article  CAS  Google Scholar 

  6. Chernyshov, A. et al. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  7. Edelstein, V. M. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  8. Bernevig, B. A. & Vafek, O. Phys. Rev. B 72, 033203 (2005).

    Article  Google Scholar 

  9. Manchon, A. & Zhang, S. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  10. Garate, I. & MacDonald, A. H. Phys. Rev. B 80, 134403 (2009).

    Article  Google Scholar 

  11. Hals, K. M. D., Brataas, A. & Tserkovnyak, Y. EPL 90, 47002 (2010).

    Article  Google Scholar 

  12. Pesin, D. A. & MacDonald, A. H. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  13. Van der Bijl, E. & Duine, R. A. Phys. Rev. B 86, 094406 (2012).

    Article  Google Scholar 

  14. Wang, X. & Manchon, A. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  15. Hals, K. M. D. & Brataas, A. Phys. Rev. B 88, 085423 (2013).

    Article  Google Scholar 

  16. Kurebayashi, H. et al. Nature Nanotech. (in the press).

  17. Hals, K. M. D. & Brataas, A. Phys. Rev. B 87, 174409 (2013).

    Article  Google Scholar 

  18. Hals, K. M. D. & Brataas, A. Phys. Rev. B (in the press); preprint at http://arXiv.org/abs/1311.1778

  19. Miron, I. M. et al. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  20. Miron, I. M. et al. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  21. Emori, S. et al. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  22. Ryu, K.-S. et al. Nature Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  23. Emori, S. et al. Preprint at http://arXiv.org/abs/1308.1432 (2013).

  24. Liu, L. et al. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  25. Haazen, P. P. J. et al. Nature Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  26. Fan, X. et al. Nature Commun. 4, 1799 (2013).

    Article  Google Scholar 

  27. Thiaville, A. et al. EPL 100, 57002 (2012).

    Article  Google Scholar 

  28. Liu, L. et al. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  29. Freimuth, F., Blugel, S. & Mokrousov, Y. Preprint at http://arXiv.org/abs/1305.4873 (2013).

  30. Kim, J. et al. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  31. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Nature Commun. 4, 1463 (2013).

    Article  Google Scholar 

  32. Garello, K. et al. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  33. Miron, I. M. et al. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  34. Yu, G. et al. Preprint at http://arXiv.org/abs/1311.0929 (2013).

  35. Cubukcu, M. et al. Preprint at http://arXiv.org/abs/1310.8235 (2013).

  36. Demidov, V. E. et al. Nature Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Brataas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brataas, A., Hals, K. Spin–orbit torques in action. Nature Nanotech 9, 86–88 (2014). https://doi.org/10.1038/nnano.2014.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing