Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2

Abstract

Phase transitions can be used to alter the properties of a material without adding any additional atoms and are therefore of significant technological value. In a solid, phase transitions involve collective atomic displacements, but such atomic processes have so far only been investigated using macroscopic approaches. Here, we show that in situ scanning transmission electron microscopy can be used to follow the structural transformation between semiconducting (2H) and metallic (1T) phases in single-layered MoS2, with atomic resolution. The 2H/1T phase transition involves gliding atomic planes of sulphur and/or molybdenum and requires an intermediate phase (α-phase) as a precursor. The migration of two kinds of boundaries (β- and γ-boundaries) is also found to be responsible for the growth of the second phase. Furthermore, we show that areas of the 1T phase can be controllably grown in a layer of the 2H phase using an electron beam.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymorphs of single-layered MoS2.
Figure 2: Atomic movements during 2H → 1T phase transformation in single-layered MoS2 at T = 600 °C.
Figure 3: Three elemental steps responsible for phase transitions in single-layered MoS2 (T = 600 °C).
Figure 4: Time dependence of phase transformation process and fabrication of nanodevices in single-layered MoS2.

Similar content being viewed by others

References

  1. Winer, W. O. Molybdenum disulphide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967).

    Article  CAS  Google Scholar 

  2. Holinski, R. & Gansheimer, J. A study of the lubricating mechanism of molybdenum disulphide. Wear 19, 329–342 (1972).

    Article  CAS  Google Scholar 

  3. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  4. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  5. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  6. Matthesis, L. F. Band structure of transition-metal–dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    Article  Google Scholar 

  7. Wypych, F. & Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1386–1388 (1992).

  8. Bissessur, R., Kanatzidis, M. G., Schindler, J. L. & Kannewurf, C. R. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2 . J. Chem. Soc. Chem. Commun. 1582–1585 (1993).

  9. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

    Article  CAS  Google Scholar 

  10. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999).

    Article  CAS  Google Scholar 

  11. Wypych, F., Solenthaler, C., Prins, R. & Weber, Th. Electron diffraction study of intercalation compounds derived from 1T-MoS2 . J. Solid State Chem. 144, 430–436 (1999).

    Article  CAS  Google Scholar 

  12. Enyashin, A. N. et al. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C. 115, 24586–24591 (2011).

    Article  CAS  Google Scholar 

  13. Sandoval, S. J., Yang, D., Frindt, R. F. & Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2 . Phys. Rev. B. 44, 3955–3962 (1991).

    Article  Google Scholar 

  14. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012).

    Article  CAS  Google Scholar 

  15. Hashimoto, A., Suenaga, K., Gloter, A., Urtia, K. & Iijima. S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  CAS  Google Scholar 

  16. Kotakoski, J., Krasheninnikov, A. V., Kaiser, U. & Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011).

    Article  CAS  Google Scholar 

  17. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  18. Kurasch, S. et al. Atom-by-atom observation of grain boundary migration in graphene. Nano Lett. 12, 3168–3173 (2012).

    Article  CAS  Google Scholar 

  19. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    Article  CAS  Google Scholar 

  20. Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012).

    Article  CAS  Google Scholar 

  21. Lehitnen, O., Kurasch, S., Krasheninnikov, A. V. & Kaiser. U. Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nature Commun. 4, 2098 (2013).

    Article  Google Scholar 

  22. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  23. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  CAS  Google Scholar 

  24. Najmaei, S. et al. Vapor phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  25. Tiong, K. K., Huang, Y. S. & Ho, C. H. Electrical and optical anisotropic properties of rhenium-doped molybdenum disulphide. J. Alloys Comp. 317–318, 208–212 (2001).

    Article  Google Scholar 

  26. Lin, Y. C. et al. Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv. Mater. http://dx.doi.org/10.1002/adma.201304985 (2014).

  27. Zhou, W. et al. Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 109, 206803 (2012).

    Article  Google Scholar 

  28. Ramasse, Q. M. et al. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995 (2013).

    Article  CAS  Google Scholar 

  29. Chen, Y. et al. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 5, 4610–4616 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors from AIST acknowledge support from the JST Research Acceleration Programme. D.O.D. and Y.S.H. acknowledge the support of the National Science Council of Taiwan (projects NSC 100-2112-M-011-001-MY3 and NSC 101-2811-M-011-002).

Author information

Authors and Affiliations

Authors

Contributions

Y.C.L. performed experiments and analysed data. D.O.D. and Y.S.H. grew materials. K.S. and Y.C.L. designed experiments. Y.C.L. and K.S. co-wrote the manuscript.

Corresponding author

Correspondence to Kazu Suenaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 7465 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 560 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 768 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 839 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 612 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 162 kb)

Supplementary Movie 6

Supplementary Movie 6 (MOV 761 kb)

Supplementary Movie 7

Supplementary Movie 7 (MOV 508 kb)

Supplementary Movie 8

Supplementary Movie 8 (MOV 451 kb)

Supplementary Movie 9

Supplementary Movie 9 (MOV 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Dumcenco, D., Huang, YS. et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotech 9, 391–396 (2014). https://doi.org/10.1038/nnano.2014.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing