Photoinduced doping in heterostructures of graphene and boron nitride

Abstract

The design of stacks of layered materials in which adjacent layers interact by van der Waals forces1 has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality2,3,4,5,6,7,8. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p–n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental observation of photoinduced modulation doping effect in G/BN heterostructures.
Figure 2: Transport characteristics of G/BN after photoinduced modulation doping.
Figure 3: Dynamics and origin of photoinduced modulation doping effect.
Figure 4: Optical spectrum of defect states in h-BN.

References

  1. 1

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nature Phys. 6, 109–113 (2010).

    Article  Google Scholar 

  3. 3

    Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Decker, R. G. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382–386 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nano 5, 722–726 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Zomer, P. J., Dash, S. P., Tombros, N. & van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Article  Google Scholar 

  12. 12

    Kim, Y. D. et al. Focused-laser-enabled p–n junctions in graphene field-effect transistors. ACS Nano 7, 5850–5857 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Tiberj, A. et al. Reversible optical doping of graphene. Sci. Rep. 3, 2355 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Dingle, R., Stormer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in modulation-doped semiconductor heterojunction super-lattices. Appl. Phys. Lett. 33, 665–667 (1978).

    CAS  Article  Google Scholar 

  17. 17

    Pfeiffer, L., West, K. W., Stormer, H. L. & Baldwin, K. W. Electron mobilities exceeding 107 cm2/V s in modulation-doped GaAs. Appl. Phys. Lett. 55, 1888–1890 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Chen, J. H. et al. Charged-impurity scattering in graphene. Nature Phys. 4, 377–381 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Pi, K. et al. Electronic doping and scattering by transition metals on graphene. Phys. Rev. B 80, 075406 (2009).

    Article  Google Scholar 

  21. 21

    Huard, B. et al. Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science 317, 638–641 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Article  Google Scholar 

  24. 24

    Lohmann, T., von Klitzing, K. & Smet, J. H. Four-terminal magneto-transport in graphene p–n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Museur, L. et al. Exciton optical transitions in a hexagonal boron nitride single crystal. Phys. Status Solidi RRL 5, 214–216 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Hwang, E. H., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Yan, J. & Fuhrer, M. S. Correlated charged impurity scattering in graphene. Phys. Rev. Lett. 107, 206601 (2011).

    Article  Google Scholar 

  28. 28

    Attaccalite, C., Bockstedte, M., Marini, A., Rubio, A. & Wirtz, L. Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B 83, 144115 (2011).

    Article  Google Scholar 

  29. 29

    Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Mater. 12, 792–797 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Jarillo-Herrero and N. Gabor for stimulating discussions and B. Standley for help with data acquisition software. Graphene synthesis, device fabrication and optical measurements were supported by the Office of Naval Research (award N00014-13-1-0464). Electrical measurements and theoretical analysis of this work were mainly supported by the Office of Basic Energy Science, Department of Energy (contract no. DE-SC0003949, Early Career Award; DE-AC02-05CH11231, Materials Science Division). F.W. acknowledges support from a David and Lucile Packard fellowship. J.V.J. acknowledges support from the UC President's Postdoctoral fellowship.

Author information

Affiliations

Authors

Contributions

F.W. and L.J. conceived the experiment. L.J. and J.V.J. carried out optical and electronic measurements. J.V.J., E.H., S.K., C.N., H.T and W.Y. contributed to sample fabrication, K.W. and T.T. synthesized the h-BN samples, F.W., J.V.J. and L.J. performed data analysis and theoretical analysis. F.W., L.J. and J.V.J. co-wrote the manuscript. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to F. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1394 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ju, L., Velasco, J., Huang, E. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nature Nanotech 9, 348–352 (2014). https://doi.org/10.1038/nnano.2014.60

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research