Atomic-scale control of competing electronic phases in ultrathin LaNiO3

Abstract

In an effort to scale down electronic devices to atomic dimensions1, the use of transition-metal oxides may provide advantages over conventional semiconductors. Their high carrier densities and short electronic length scales are desirable for miniaturization2, while strong interactions that mediate exotic phase diagrams3 open new avenues for engineering emergent properties4,5. Nevertheless, understanding how their correlated electronic states can be manipulated at the nanoscale remains challenging. Here, we use angle-resolved photoemission spectroscopy to uncover an abrupt destruction of Fermi liquid-like quasiparticles in the correlated metal LaNiO3 when confined to a critical film thickness of two unit cells. This is accompanied by the onset of an insulating phase as measured by electrical transport. We show how this is driven by an instability to an incipient order of the underlying quantum many-body system, demonstrating the power of artificial confinement to harness control over competing phases in complex oxides with atomic-scale precision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Giant quasiparticle mass renormalization in LaNiO3.
Figure 2: Thickness-driven MIT.
Figure 3: Loss of quasiparticle integrity across the MIT.
Figure 4: Atomic-scale control of competing quantum phases in ultrathin LaNiO3.

References

  1. 1

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Takagi, H. & Hwang, H. Y. An emergent change of phase for electronics. Science 327, 1601–1602 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Eguchi, R. et al. Fermi surfaces, electron–hole asymmetry, and correlation kink in a three-dimensional Fermi liquid LaNiO3 . Phys. Rev. B 79, 115122 (2009).

    Article  Google Scholar 

  7. 7

    Chakhalian, J. et al. Asymmetric orbital–lattice interactions in ultrathin correlated oxide films. Phys. Rev. Lett. 107, 116805 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Qazilbash, M. M. et al. Electronic correlations in the iron pnictides. Nature Phys. 5, 647–650 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Rajeev, K., Shivashankar, G. & Raychaudhuri, A. Low-temperature electronic properties of a normal conducting perovskite oxide LaNiO3 . Solid State Commun. 79, 591–595 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Xu, X. Q., Peng, J. L., Li, Z. Y., Ju, H. L. & Greene, R. L. Resisitivity, thermopower, and susceptibility of RNiO3 (R = La,Pr). Phys. Rev. B 48, 1112–1118 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Sreedhar, K. et al. Electronic properties of the metallic perovskite LaNiO3: correlated behavior of 3d electrons. Phys. Rev. B 46, 6382–6386 (1992).

    CAS  Article  Google Scholar 

  12. 12

    Ouellette, D. G. et al. Optical conductivity of LaNiO3: coherent transport and correlation driven mass enhancement. Phys. Rev. B 82, 165112 (2010).

    Article  Google Scholar 

  13. 13

    Stewart, M. K. et al. Optical study of strained ultrathin films of strongly correlated LaNiO3 . Phys. Rev. B 83, 075125 (2011).

    Article  Google Scholar 

  14. 14

    Deng, X. et al. Hallmark of strong electronic correlations in LaNiO3: photoemission kink and broadening of fully occupied bands. Phys. Rev. B 85, 125137 (2012).

    Article  Google Scholar 

  15. 15

    Meevasana, W. et al. Hierarchy of multiple many-body interaction scales in high-temperature superconductors. Phys. Rev. B 75, 174506 (2007).

    Article  Google Scholar 

  16. 16

    Scherwitzl, R. et al. Metal–insulator transition in ultrathin LaNiO3 Films. Phys. Rev. Lett. 106, 246403 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Son, J. et al. Low-dimensional Mott material: transport in ultrathin epitaxial LaNiO3 films. Appl. Phys. Lett. 96, 062114 (2010).

    Article  Google Scholar 

  18. 18

    Gray, A. X. et al. Insulating state of ultrathin epitaxial LaNiO3 thin films detected by hard X-ray photoemission. Phys. Rev. B 84, 075104 (2011).

    Article  Google Scholar 

  19. 19

    Sakai, E. et al. Gradual localization of Ni 3d states in LaNiO3 ultrathin films induced by dimensional crossover. Phys. Rev. B 87, 075132 (2013).

    Article  Google Scholar 

  20. 20

    Lacorre, P. et al. Synthesis, crystal structure, and properties of metallic PrNiO3: comparison with metallic NdNiO3 and semiconducting SmNiO3 . J. Solid State Chem. 91, 225–237 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Horiba, K. et al. Electronic structure of LaNiO3: an in situ soft X-ray photoemission and absorption study. Phys. Rev. B 76, 155104 (2007).

    Article  Google Scholar 

  22. 22

    Yoshimatsu, K. et al. Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319–322 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Meevasana, W. et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nature Mater. 10, 114–118 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Ioffe, A. F. & Regel, A. R. Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 4, 237–291 (1960).

    Google Scholar 

  25. 25

    Valla, T. et al. Coherence–incoherence and dimensional crossover in layered strongly correlated metals. Nature 417, 627–630 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Frano, A. et al. Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys. Rev. Lett. 111, 106804 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Schwier, E. F. et al. Unusual temperature dependence of the spectral weight near the Fermi level of NdNiO3 thin films. Phys. Rev. B 86, 195147 (2012).

    Article  Google Scholar 

  28. 28

    Uchida, M. et al. Pseudogap of metallic layered nickelate R2–xSrxNiO4 (R = Nd,Eu) crystals measured using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 027001 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Lau, B. & Millis, A. J. Theory of the magnetic and metal-insulator transitions in rNiO3 bulk and layered structures. Phys. Rev. Lett. 110, 126404 (2013).

    Article  Google Scholar 

  30. 30

    Hwang, J. et al. Structural origins of the properties of rare earth nickelate superlattices. Phys. Rev. B 87, 060101 (2013).

    Article  Google Scholar 

  31. 31

    Chen, H. et al. Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys. Rev. Lett. 110, 186402 (2013).

    Article  Google Scholar 

  32. 32

    Torrance, J. B., Lacorre, P., Nazzal, A. I., Ansaldo, E. J. & Niedermayer, C. Systematic study of insulator–metal transitions in perovskites RNiO3 (R = Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).

    CAS  Article  Google Scholar 

  33. 33

    Evtushinsky, D. V. et al. Bridging charge–orbital ordering and Fermi surface instabilities in half-doped single-layered manganite La0.5Sr1.5MnO4 . Phys. Rev. Lett. 105, 147201 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (grant no. N00014-12-1-0791), the National Science Foundation (NSF) through the MRSEC programme (Cornell Center for Materials Research, DMR-1120296) and was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (grant ECCS-0335765). X. He and I. Božović were supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. H.I. Wei acknowledges support from the NSF IGERT programme (DGE-0654193). The authors thank A. Georges, C.A. Marianetti, A.J. Millis, J.A. Mundy, T.W. Noh, and C.J. Palmstrøm for discussions.

Author information

Affiliations

Authors

Contributions

The samples were grown by P.D.C.K. and C.A. and characterized by P.D.C.K., H.I.W. and Y.F.N. ARPES measurements were performed by P.D.C.K., H.I.W., Y.F.N. and M.U. and analysed by P.D.C.K. S.Z. grew the LaAlO3 buffer layers used for some samples. X.H. and I.B. performed the high-pressure oxygen annealing experiments and corresponding sample characterization. P.D.C.K. and K.M.S. wrote the paper, with input and discussion from all co-authors. P.D.C.K., D.G.S. and K.M.S. devised the project and were responsible for its overall planning and direction.

Corresponding author

Correspondence to K. M. Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 5659 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, P., Wei, H., Nie, Y. et al. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nature Nanotech 9, 443–447 (2014). https://doi.org/10.1038/nnano.2014.59

Download citation

Further reading