Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic control of optical Anderson localization modes

Abstract

Anderson localization of light has been demonstrated in a few different dielectric materials and lithographically fabricated structures. However, such localization is difficult to control, and requires strong magnetic fields or nonlinear optical effects, and electronic control has not been demonstrated. Here, we show control of optical Anderson localization using charge carriers injected into more than 100 submicrometre-scale p–n diodes. The diodes are embedded into the cross-section of the optical waveguide and are fabricated with a technology compatible with the current electronics industry. Large variations in the output signal, exceeding a factor of 100, were measured with 1 V and a control current of 1 mA. The transverse footprint of our device is only 0.125 µm2, about five orders of magnitude smaller than optical two-dimensional lattices. Whereas all-electronic localization has a narrow usable bandwidth, electronically controlled optical localization can access more than a gigahertz of bandwidth and creates new possibilities for controlling localization at radiofrequencies, which can benefit applications such as random lasers, optical limiters, imagers, quantum optics and measurement devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupled oscillators.
Figure 2: Optical device and electronic control.
Figure 3: Spectrally resolved infrared imaging of modes.
Figure 4: On and off states of the localized mode.
Figure 5: Switching waveform of localization.

Similar content being viewed by others

References

  1. Wiersma, D. S. Disordered photonics. Nature Photon. 7, 188–196 (2013).

    Article  CAS  Google Scholar 

  2. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    Article  CAS  Google Scholar 

  3. Crespi, A. et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photon. 7, 322–328 (2013).

    Article  CAS  Google Scholar 

  4. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nature Photon. 7, 746–751 (2013).

    Article  CAS  Google Scholar 

  5. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  CAS  Google Scholar 

  6. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    Article  Google Scholar 

  7. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  CAS  Google Scholar 

  8. Topolancik, J., Ilic, B. & Vollmer, F. Experimental observation of strong photon localization in disordered photonic crystal waveguides. Phys. Rev. Lett. 99, 253901 (2007).

    Article  CAS  Google Scholar 

  9. Mookherjea, S., Park, J. S., Yang, S. H. & Bandaru, P. R. Localization in silicon nanophotonic slow-light waveguides. Nature Photon. 2, 90–93 (2008).

    Article  CAS  Google Scholar 

  10. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  Google Scholar 

  11. Kenke, R. & Maret, G. Affecting weak light localization by strong magnetic fields. Physica Scripta T49, 605–609 (1993).

    Google Scholar 

  12. Liu, H-Y. et al. Self-induced Anderson localization and optical limiting in photonic crystal coupled cavity waveguides with Kerr nonlinearity. Appl. Phys. Lett. 90, 213507 (2007).

    Article  Google Scholar 

  13. Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one dimensional metals. Phys. Rev. B 37, 325–340 (1998).

    Article  Google Scholar 

  14. Pendry, J. Symmetry and transport of waves in one-dimensional disordered systems. Adv. Phys. 43, 461–542 (1994).

    Article  Google Scholar 

  15. Vandamme, L. K. J. & Hooge, F. N. What do we certainly know about noise in MOSTs? IEEE Electron. Dev. Lett. 55, 3070–3085 (2008).

    Article  Google Scholar 

  16. Forbes, L. On the theory of 1/f noise of semi-insulating materials. IEEE Electron. Dev. Lett. 42, 1866–1868 (1995).

    Article  Google Scholar 

  17. Fetter, A. L. & Walecka, J. D. Theoretical Mechanics of Particles and Continua (McGraw-Hill, 1980).

    Google Scholar 

  18. Cooper, M. L. et al. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. Express 18, 26505–26516 (2010).

    Article  Google Scholar 

  19. Thouless, D. J. Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39, 1167–1169 (1977).

    Article  CAS  Google Scholar 

  20. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Article  CAS  Google Scholar 

  21. Markos, P. & Soukoulis, C. M. Intensity distribution of scalar waves propagating in random media. Phys. Rev. B 71, 054201 (2005).

    Article  Google Scholar 

  22. Kogan, E. & Kaveh, M. Random-matrix-theory approach to the intensity distributions of waves propagating in a random medium. Phys. Rev. B 52, R3813 (1995).

    Article  CAS  Google Scholar 

  23. Van Rossum, M. C. W. & Nieuwenhuizen, T. M. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys. 71, 313–371 (1997).

    Article  Google Scholar 

  24. Poon, J. K. S. et al. Matrix analysis of microring coupled-resonator optical waveguides. Opt. Express 12, 90–103 (2004).

    Article  Google Scholar 

  25. Xia, F., Rooks, M., Sekaric, L. & Vlasov, Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express 15, 11934–11941 (2007).

    Article  Google Scholar 

  26. Cooper, M. & Mookherjea, S. Modeling of multiband transmission in long silicon coupled-resonator optical waveguides. IEEE Photon. Technol. Lett. 23, 872–874 (2011).

    Article  Google Scholar 

  27. Markos, P. Numerical analysis of the Anderson localization. Acta Physica Slovaca 56, 561–685 (2006).

    Google Scholar 

  28. Soref, R. A. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article  Google Scholar 

  29. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  CAS  Google Scholar 

  30. Leong, E. & Yu, S. UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes. Adv. Mater. 18, 1685–1688 (2006).

    Article  CAS  Google Scholar 

  31. Chu, S., Olmedo, M., Yang, Z., Kong, J. & Liu, J. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 93, 181106 (2008).

    Article  Google Scholar 

  32. Zhu, H. et al. Low-threshold electrically pumped random lasers. Adv. Mater. 22, 1877–1881 (2010).

    Article  CAS  Google Scholar 

  33. Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  CAS  Google Scholar 

  34. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  CAS  Google Scholar 

  35. Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

    Article  Google Scholar 

  36. Mahler, L. et al. Quasi-periodic distributed feedback laser. Nature Photon. 4, 165–169 (2010).

    Article  CAS  Google Scholar 

  37. Deng, C-S., Xu, H. & Deych, L. Effect of size disorder on the optical transport in chains of coupled microspherical resonators. Opt. Express 19, 6923–6937 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J.B. Pendry, D. Wiersma, P. Lodahl, C. Lopez, Y. Vlasov and H. Cao for discussions. This work was supported by the US National Science Foundation (grants ECCS 092539, 1028553, 1153716 and 1201308) and the Center for Integrated Access Networks—a National Science Foundation Engineering Research Center. J.R.O. acknowledges support from the Agency for Science, Technology and Research (A*STAR), Singapore. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of the US Government.

Author information

Authors and Affiliations

Authors

Contributions

S.M. conceived the study, coordinated the project and wrote the manuscript with input from all authors. J.R.O. designed the lithographic layout for the devices, which were fabricated by X.L. and L.G.Q. Measurements were performed by S.M. and J.R.O. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shayan Mookherjea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mookherjea, S., Ong, J., Luo, X. et al. Electronic control of optical Anderson localization modes. Nature Nanotech 9, 365–371 (2014). https://doi.org/10.1038/nnano.2014.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing