Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

Abstract

Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories1. The scaling of such phenomena down to the single-molecule level2,3 may enable novel spintronic devices4. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging5,6,7 of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy8. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: FePc on Cu2N/Cu(001).
Figure 2: Differential conductance changes caused by magnetic-field-sensitive NDR.
Figure 3: Model of magnetically sensitive NDR.
Figure 4: Tunnelling across a double barrier junction.
Figure 5: Temperature dependence of NDR.

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1494 (2001).

    Article  CAS  Google Scholar 

  2. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    Article  CAS  Google Scholar 

  3. Kawahara, S. L. et al. Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett. 12, 4558–4563 (2012).

    Article  CAS  Google Scholar 

  4. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  5. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  CAS  Google Scholar 

  6. Wu, S. W., Nazin, G. V., Chen, X., Qiu, X. H. & Ho, W. Control of relative tunneling rates in single molecule bipolar electron transport. Phys. Rev. Lett. 93, 236802 (2004).

    Article  CAS  Google Scholar 

  7. Fernández-Torrente, I., Kreikemeyer-Lorenzo, D., Stróżecka, A., Franke, K. J. & Pascual, J. I. Gating the charge state of single molecules by local electric fields. Phys. Rev. Lett. 108, 036801 (2012).

    Article  Google Scholar 

  8. Ham, U. & Ho, W. Spin splitting unconstrained by electron pairing: the spin-vibronic states. Phys. Rev. Lett. 108, 106803 (2012).

    Article  Google Scholar 

  9. Binasch, G., Grunberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  10. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  11. Urdampilleta, M., Klyatskaya, S., Cleuziou, J.-P., Ruben, M. & Wernsdorfer, W. Supramolecular spin valves. Nature Mater. 10, 502–506 (2011).

    Article  CAS  Google Scholar 

  12. Lyo, I. W. & Avouris, P. Negative differential resistance on the atomic scale: implications for atomic scale devices. Science 245, 1369–1371 (1989).

    Article  CAS  Google Scholar 

  13. Chen, L. et al. Mechanism for negative differential resistance in molecular electronic devices: local orbital symmetry matching. Phys. Rev. Lett. 99, 146803 (2007).

    Article  Google Scholar 

  14. Xue, Y. Q. et al. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys. Rev. B 59, R7852–7855 (1999).

    Article  CAS  Google Scholar 

  15. Wang, B. et al. Effects of discrete energy levels on single-electron tunneling in coupled metal particles. Appl. Phys. Lett. 82, 3767–3769 (2003).

    Article  CAS  Google Scholar 

  16. Gaudioso, J., Lauhon, L. J. & Ho, W. Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 85, 1918–1921 (2000).

    Article  CAS  Google Scholar 

  17. Grobis, M., Wachowiak, A., Yamachika, R. & Crommie, M. F. Tuning negative differential resistance in a molecular film. Appl. Phys. Lett. 86, 204102 (2005).

    Article  Google Scholar 

  18. Tu, X., Mikaelian, G. & Ho, W. Controlling single-molecule negative differential resistance in a double-barrier tunnel junction. Phys. Rev. Lett. 100, 126807 (2008).

    Article  CAS  Google Scholar 

  19. Heinrich, B., Rastei, M., Choi, D. J., Frederiksen, T. & Limot, L. Engineering negative differential conductance with the Cu(111) surface state. Phys. Rev. Lett. 107, 246801 (2011).

    Article  CAS  Google Scholar 

  20. Brown, E. R. et al. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 58, 2291–2293 (1991).

    Article  CAS  Google Scholar 

  21. Ozbay, E. & Bloom, D. M. 110-GHz monolithic resonant-tunneling-diode trigger circuit. IEEE Electron. Dev. Lett. 12, 480–482 (1991).

    Article  Google Scholar 

  22. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  23. Scarfato, A. et al. Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surf. Sci. 602, 677–683 (2008).

    Article  CAS  Google Scholar 

  24. Mugarza, A. et al. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys. Rev. Lett. 105, 115702 (2010).

    Article  CAS  Google Scholar 

  25. Minamitani, E. et al. Symmetry-driven novel Kondo effect in a molecule. Phys. Rev. Lett. 109, 086602 (2012).

    Article  Google Scholar 

  26. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).

    Article  Google Scholar 

  27. Mizuta, H. & Tanoue, T. The Physics and Applications of Resonant Tunnelling Diodes (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  28. Mikaelian, G., Ogawa, N., Tu, X. W. & Ho, W. Atomic scale control of single molecule charging. J. Chem. Phys. 124, 131101 (2006).

    Article  CAS  Google Scholar 

  29. Mugarza, A. et al. Spin coupling and relaxation inside molecule metal contacts. Nature Commun. 2, 490 (2011).

    Article  Google Scholar 

  30. Huang, J. et al. Iron–phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance. J. Chem. Phys. 136, 064707 (2012).

    Article  Google Scholar 

  31. Kahle, S. et al. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett. 12, 518–521 (2012).

    Article  CAS  Google Scholar 

  32. Repp, J., Meyer, G., Stojkovic, S., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  33. Chen, X. et al. Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett. 101, 197208 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank G. Aeppli, V. Crespi, J. Elzerman, J. Fernández-Rossier, M. Hybertsen, P. Littlewood, S. Loth, C. Mathieu, M. Ternes and J. van Slageren for stimulating discussions. B.W., F.E.H., H.P., A.J.F. and C.F.H. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) (EP/H002367/1 and EP/D063604/1) and the Leverhulme Trust (RPG-2012-754). M.P. is grateful for support from European Union project ARTIST (reference 243421) and allocations of computer resources at the high-performance computing facility HECToR through the Materials Chemistry Consortium funded by the EPSRC (EP/L000202/1) and at the Parallell Dator Centrum through the Swedish National Infrastructure for Computing.

Author information

Authors and Affiliations

Authors

Contributions

F.E.H. and C.F.H. conceived of the experiments. B.W., F.E.H. and H.P. performed the experiments and analysed the results. J.S. and M.P. performed the DFT calculations. All authors discussed the results and contributed to writing the paper.

Corresponding author

Correspondence to Cyrus F. Hirjibehedin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 459 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Warner, B., El Hallak, F., Prüser, H. et al. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction. Nature Nanotech 10, 259–263 (2015). https://doi.org/10.1038/nnano.2014.326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.326

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research