Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Abstract

The ability to detect light over a broad spectral range is central to several technological applications in imaging, sensing, spectroscopy and communication1,2. Graphene is a promising candidate material for ultra-broadband photodetectors, as its absorption spectrum covers the entire ultraviolet to far-infrared range3,4. However, the responsivity of graphene-based photodetectors has so far been limited to tens of mA W−1 (refs 5, 6, 7, 8, 9, 10) due to the small optical absorption of a monolayer of carbon atoms. Integration of colloidal quantum dots in the light absorption layer can improve the responsivity of graphene photodetectors to 1 × 107 A W−1 (ref. 11), but the spectral range of photodetection is reduced because light absorption occurs in the quantum dots. Here, we report an ultra-broadband photodetector design based on a graphene double-layer heterostructure. The detector is a phototransistor consisting of a pair of stacked graphene monolayers (top layer, gate; bottom layer, channel) separated by a thin tunnel barrier. Under optical illumination, photoexcited hot carriers generated in the top layer tunnel into the bottom layer, leading to a charge build-up on the gate and a strong photogating effect on the channel conductance. The devices demonstrated room-temperature photodetection from the visible to the mid-infrared range, with mid-infrared responsivity higher than 1 A W−1, as required by most applications12. These results address key challenges for broadband infrared detectors, and are promising for the development of graphene-based hot-carrier optoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene double-layer heterostructure photodetectors.
Figure 2: Photoresponse of the graphene double-layer heterostructures in the visible region.
Figure 3: Photoexcited hot carrier tunnelling in graphene double-layer heterostructures.
Figure 4: Near- to mid-infrared photoresponse of the graphene/silicon/graphene heterostructure photodetector.

References

  1. Rogalski, A. Infrared detectors: status and trends. Prog. Quant. Electron. 27, 59–210 (2003).

    Article  CAS  Google Scholar 

  2. Clark, J. & Lanzani, G. Organic photonics for communications. Nature Photon. 4, 438–446 (2010).

    Article  CAS  Google Scholar 

  3. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  4. Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

    Article  CAS  Google Scholar 

  5. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  CAS  Google Scholar 

  6. Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  7. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  8. Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  9. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 888–891 (2013).

    Article  Google Scholar 

  10. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    Article  CAS  Google Scholar 

  11. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  12. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  13. Liu, C. H., Dissanayake, N. M., Lee, S., Lee, K. & Zhong, Z. H. Evidence for extraction of photoexcited hot carriers from graphene. ACS Nano 6, 7172–7176 (2012).

    Article  CAS  Google Scholar 

  14. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  15. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  16. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    Article  CAS  Google Scholar 

  17. Fang, Z. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

    Article  CAS  Google Scholar 

  18. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  19. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    Article  CAS  Google Scholar 

  20. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    Article  Google Scholar 

  21. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  22. Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun. 4, 1811 (2013).

    Article  Google Scholar 

  23. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Article  Google Scholar 

  24. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    Article  CAS  Google Scholar 

  25. Graham, M. W., Shi, S. F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2013).

    Article  CAS  Google Scholar 

  26. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).

    Article  CAS  Google Scholar 

  27. Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    Article  CAS  Google Scholar 

  28. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  CAS  Google Scholar 

  29. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nature Nanotech. 5, 391–400 (2010).

    Article  CAS  Google Scholar 

  30. Thissen, P., Schindler, B., Diesing, D. & Hasselbrink, E. Optical response of metal–insulator–metal heterostructures and their application for the detection of chemicurrents. New J. Phys. 12, 113014 (2010).

    Article  Google Scholar 

  31. Li, X. et al. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010).

    Article  CAS  Google Scholar 

  32. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 8, 100–103 (2013).

    Article  CAS  Google Scholar 

  33. Lee, S., Lee, K., Liu, C-H. & Zhong, Z. Homogeneous bilayer graphene film based flexible transparent conductor. Nanoscale 4, 639–644 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C.Y. Sung for discussions. This work was supported by the National Science Foundation (NSF) Center for Photonic and Multiscale Nanomaterials (DMR 1120923) and by a NSF CAREER Award (ECCS-1254468). Devices were fabricated in the Lurie Nanofabrication Facility at the University of Michigan, a member of the NSF National Nanotechnology Infrastructure Network.

Author information

Authors and Affiliations

Authors

Contributions

C.L., Z.Z. and T.N. conceived the experiments. C.L. fabricated the devices. C.L. and Y.C. performed the measurements. All authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Theodore B. Norris or Zhaohui Zhong.

Ethics declarations

Competing interests

The University of Michigan at Ann Arbor, along with the authors, has filed provisional patents on the technology and intellectual property reported here (patent application number US 61/778,716; title: Photodetector based on double layer heterostructures).

Supplementary information

Supplementary information

Supplementary Information (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CH., Chang, YC., Norris, T. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotech 9, 273–278 (2014). https://doi.org/10.1038/nnano.2014.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing