Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmon-induced hot carrier science and technology

Abstract

The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects that can be stimulated by the photoexcitation of hot electrons in a metal (blue).
Figure 2: Photoexcitation and relaxation of metallic nanoparticles.
Figure 3: Examples of hot-carrier-induced chemical processes stimulated by plasmon excitations.
Figure 4: Physics and applications of hot-electron-induced heating.
Figure 5: Hot electron devices.

Similar content being viewed by others

References

  1. Hertz, H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. Chem. 267, 983–1000 (1887).

    Google Scholar 

  2. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

    Google Scholar 

  3. Planck, M. Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309, 553–563 (1901).

    Google Scholar 

  4. Hüfner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 2003).

    Google Scholar 

  5. Manjavacas, A., Liu, J., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014). This paper proposes a theoretical model that shows how hot carrier production rate and energy distribution depend on the particle size and hot carrier lifetime.

    CAS  Google Scholar 

  6. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 8, 95–103 (2014).

    CAS  Google Scholar 

  7. Hofmann, J. & Steinmann, W. Plasma resonance in the photoemission of silver. Phys. Status Solidi 30, K53–K56 (1968).

    CAS  Google Scholar 

  8. Sipe, J. E. & Becher, J. Surface-plasmon-assisted photoemission. J. Opt. Soc. Am. 71, 1286–1288 (1981).

    CAS  Google Scholar 

  9. Bohren, C. F. How can a particle absorb more than the light incident on it? Am. J. Phys. 51, 323–327 (1983). A key paper in plasmonics, which illustrates how subwavelength metallic nanoparticles can absorb light very effectively.

    CAS  Google Scholar 

  10. Oldenburg, S., Averitt, R., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    CAS  Google Scholar 

  11. Moskovits, M. Surface enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    CAS  Google Scholar 

  12. Gersten, J. I. & Nitzan, A. Photophysics and photochemistry near surfaces and small particles. Surf. Sci. 158, 165–189 (1985).

    CAS  Google Scholar 

  13. Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Google Scholar 

  14. Li, X., Xiao, D. & Zhang, Z. Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 15, 023011 (2013).

    Google Scholar 

  15. Hao, F. et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 8, 3983–3988 (2008).

    CAS  Google Scholar 

  16. Watanabe, K., Menzel, D., Nilius, N. & Freund, H-J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    CAS  Google Scholar 

  17. Lisowski, M. et al. Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl. Phys. A Mater. Sci. Process. 78, 165–176 (2004).

    CAS  Google Scholar 

  18. Inouye, H., Tanaka, K., Tanahashi, I. & Hirao, K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998).

    CAS  Google Scholar 

  19. Frischkorn, C. & Wolf, M. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

    CAS  Google Scholar 

  20. Damascelli, A. et al. Fermi surface, surface states, and surface reconstruction in Sr2RuO4 . Phys. Rev. Lett. 4, 2–5 (2000).

    Google Scholar 

  21. Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013). This paper shows how plasmonic nanoparticles can be used to control photoemission and acceleration of electrons.

    CAS  Google Scholar 

  22. Buntin, S., Richter, L., Cavanagh, R. & King, D. Optically driven surface reactions: Evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1324 (1988).

    CAS  Google Scholar 

  23. Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    CAS  Google Scholar 

  24. Kao, F-J., Busch, D. G., Gomes da Costa, D. & Ho, W. Femtosecond versus nanosecond surface photochemistry: O2+CO on Pt(111) at 80 K. Phys. Rev. Lett. 70, 4098–4101 (1993).

    CAS  Google Scholar 

  25. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  Google Scholar 

  26. Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002).

    CAS  Google Scholar 

  27. Nitzan, A. & Brus, L. E. Theoretical model for enhanced photochemistry on rough surfaces. J. Chem. Phys. 75, 2205–2214 (1981).

    CAS  Google Scholar 

  28. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    CAS  Google Scholar 

  29. Gavnholt, J., Rubio, A., Olsen, T., Thygesen, K. & Schiøtz, J. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach. Phys. Rev. B 79, 195405 (2009).

    Google Scholar 

  30. Ertel, K. et al. Time-resolved two-photon photoemission spectroscopy of HOPG and Ag nanoparticles on HOPG. Appl. Phys. B 68, 439–445 (1999).

    CAS  Google Scholar 

  31. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2 . J. Am. Chem. Soc. 136, 64–67 (2014).

    CAS  Google Scholar 

  32. Mukherjee, S., Libisch, F. & Large, N. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2012). This paper demonstrates that dissociation of H 2 on gold nanoparticles can be accomplished at room temperature, despite a large activation energy.

    Google Scholar 

  33. Jin, R., Cao, Y., Hao, E. & Métraux, G. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    CAS  Google Scholar 

  34. Wu, X., Thrall, E. S., Liu, H., Steigerwald, M. & Brus, L. Plasmon induced photovoltage and charge separation in citrate-stabilized gold nanoparticles. J. Phys. Chem. C 114, 12896–12899 (2010).

    CAS  Google Scholar 

  35. Thrall, E. S., Preska Steinberg, A., Wu, X. & Brus, L. E. The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J. Phys. Chem. C 117, 26238–26247 (2013).

    CAS  Google Scholar 

  36. Lee, S. J., Piorek, B. D., Meinhart, C. D. & Moskovits, M. Photoreduction at a distance: facile, nonlocal photoreduction of Ag ions in solution by plasmon-mediated photoemitted electrons. Nano Lett. 10, 1329–1334 (2010).

    CAS  Google Scholar 

  37. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater. 11, 1044–1050 (2012).

    CAS  Google Scholar 

  38. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotech. 8, 247–252 (2013).

    CAS  Google Scholar 

  39. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467–472 (2011). A very comprehensive study on the role of plasmonic Ag nanoparticles in enhancing hot-electron-driven catalytic oxidation reactions.

    CAS  Google Scholar 

  40. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    CAS  Google Scholar 

  41. Linic, S., Christopher, P., Xin, H. & Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 46, 1890–1899 (2013).

    CAS  Google Scholar 

  42. Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    CAS  Google Scholar 

  43. Zhang, H. & Govorov, A. O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. J. Phys. Chem. C 118, 7606–7614 (2014). An insightful account on hot carrier generation in metal nanostructures versus bulk metals.

    CAS  Google Scholar 

  44. Govorov, A. O., Zhang, H. & Gun'ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117, 16616–16631 (2013).

    CAS  Google Scholar 

  45. Thimsen, E., Le Formal, F., Grätzel, M. & Warren, S. C. Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011).

    CAS  Google Scholar 

  46. Thomann, I. et al. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440–3446 (2011).

    CAS  Google Scholar 

  47. Kim, S. J. et al. Light trapping for solar fuel generation with Mie resonances. Nano Lett. 14, 1446–1452 (2014).

    CAS  Google Scholar 

  48. Mubeen, S., Hernandez-Sosa, G., Moses, D., Lee, J. & Moskovits, M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 11, 5548–5552 (2011).

    CAS  Google Scholar 

  49. Lee, J., Mubeen, S., Ji, X., Stucky, G. D. & Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012).

    CAS  Google Scholar 

  50. DuChene, J. S. et al. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem. Int. Ed. 53, 7887–7891 (2014).

    CAS  Google Scholar 

  51. Fang, Z. et al. Plasmon-induced doping of graphene. ACS Nano 6, 10222–10228 (2012).

    CAS  Google Scholar 

  52. Appavoo, K. et al. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett. 14, 1127–1133 (2014).

    CAS  Google Scholar 

  53. Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014). This paper analyses the role of hot electrons in inducing structural phase transformations.

    CAS  Google Scholar 

  54. Moocarme, M., Domıńguez-Juaŕez, J. L. & Vuong, L. T. Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids. Nano Lett. 14, 1178–1183 (2014).

    CAS  Google Scholar 

  55. Baffou, G., Quidant, R. & Girard, C. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett. 94, 153109 (2009).

    Google Scholar 

  56. Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 7, 171–187 (2013).

    CAS  Google Scholar 

  57. Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009).

    CAS  Google Scholar 

  58. Baffou, G., Quidant, R. & García de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010).

    CAS  Google Scholar 

  59. Baffou, G., Kreuzer, M. P., Kulzer, F. & Quidant, R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).

    CAS  Google Scholar 

  60. Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    CAS  Google Scholar 

  61. Baffou, G. et al. Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6, 2452–2458 (2012). This paper shows how to control and map temperature with high spatial resolution near metallic nanostructures.

    CAS  Google Scholar 

  62. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003). A key paper that shows the potential use of plasmonic nanoparticle heating for thermal therapies.

    CAS  Google Scholar 

  63. Zharov, V. P., Mercer, K. E., Galitovskaya, E. N. & Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627 (2006).

    CAS  Google Scholar 

  64. Ro¨ntzsch, L., Heinig, K-H., Schuller, J. A. & Brongersma, M. L. Thin film patterning by surface-plasmon-induced thermocapillarity. Appl. Phys. Lett. 90, 044105 (2007).

    Google Scholar 

  65. Richardson, H. H., Thomas, A. C., Carlson, M. T., Kordesch, M. E. & Govorov, A. O. Thermo-optical responses of nanoparticles: Melting of ice and nanocalorimetry approach. J. Electron. Mater. 36, 1587–1593 (2007).

    CAS  Google Scholar 

  66. Soares, B., Jonsson, F. & Zheludev, N. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

    Google Scholar 

  67. Boyd, D. A., Greengard, L., Brongersma, M., El-Naggar, M. Y. & Goodwin, D. G. Plasmon-assisted chemical vapor deposition. Nano Lett. 6, 2592–2597 (2006). This paper demonstrates the use of plasmonic heating to grow nanostructures by chemical vapour deposition.

    CAS  Google Scholar 

  68. Cao, L., Barsic, D. N., Guichard, A. R. & Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7, 3523–3527 (2007).

    CAS  Google Scholar 

  69. Boyd, D. A., Adleman, J. R., Goodwin, D. G. & Psaltis, D. Chemical separations by bubble-assisted interphase mass-transfer. Anal. Chem. 80, 2452–2456 (2008).

    CAS  Google Scholar 

  70. Adleman, J., Boyd, D., Goodwin, D. & Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

    CAS  Google Scholar 

  71. Greengard, L., Brongersma, M. & Boyd, D. Electromagnetic control of chemical catalysis. US Patent 7,998,538 (2004).

  72. Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Young Investigator Award World Biomaterials Congress: Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

    CAS  Google Scholar 

  73. Stehr, J. et al. Gold nanostoves for microsecond DNA melting analysis. Nano Lett. 8, 619–623 (2008).

    CAS  Google Scholar 

  74. Reismann, M., Bretschneider, J. C., von Plessen, G. & Simon, U. Reversible photothermal melting of DNA in DNA–gold-nanoparticle networks. Small 4, 607–610 (2008).

    CAS  Google Scholar 

  75. Osinkina, L. et al. Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating. Nano Lett. 13, 3140–3144 (2013).

    CAS  Google Scholar 

  76. Neumann, O. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).

    CAS  Google Scholar 

  77. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    CAS  Google Scholar 

  78. Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    CAS  Google Scholar 

  79. Stern, J. M., Stanfield, J., Kabbani, W., Hsieh, J-T. & Cadeddu, J. A. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 179, 748–753 (2008).

    Google Scholar 

  80. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    CAS  Google Scholar 

  81. Hogan, N., Urban, A. & Orozco, C. A. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    CAS  Google Scholar 

  82. Stoletow, M. On a kind of electrical current produced by ultra-violet rays. Phil. Mag. Ser. 5 26, 317–319 (1888).

    Google Scholar 

  83. Peters, D. An infrared detector utilizing internal photoemission. Proc. IEEE 55, 704–705 (1967). An early work showing the use of hot carrier emission to make photodetectors for low energy, infrared photons.

    CAS  Google Scholar 

  84. Akbari, A. & Berini, P. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett. 95, 021104 (2009).

    Google Scholar 

  85. Scales, C. & Berini, P. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46, 633–643 (2010).

    CAS  Google Scholar 

  86. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).

    CAS  Google Scholar 

  87. Liu, M. & Chou, S. Internal emission metal–semiconductor–metal photodetectors on Si and GaAs for 1.3 μm detection. Appl. Phys. Lett. 66, 2673–2675 (1995).

    CAS  Google Scholar 

  88. Faris, S., Gustafson, T. & Wiesner, J. Detection of optical and infrared radiation with DC-biased electron-tunneling metal–barrier–metal diodes. IEEE J. Quantum Electron. 9, 737–745 (1973).

    CAS  Google Scholar 

  89. Heiblum, M., Wang, S., Whinnery, J. R. & Gustafson, T. K. Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron. 14, 159–169 (1978).

    Google Scholar 

  90. Ye, J. et al. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl Acad. Sci. USA 108, 13002–13006 (2011).

    CAS  Google Scholar 

  91. Fowler, R. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 107, 45–56 (1931).

    Google Scholar 

  92. Spicer, W. E. Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds. Phys. Rev. 112, 114–122 (1958).

    CAS  Google Scholar 

  93. Spicer, W. E. Negative affinity 3–5 photocathodes: Their physics and technology. Appl. Phys. 12, 115–130 (1977).

    CAS  Google Scholar 

  94. Kane, E. Simple model for collision effects in photoemission. Phys. Rev. 147, 335–339 (1966).

    CAS  Google Scholar 

  95. Dalal, V. L. Simple model for internal photoemission. J. Appl. Phys. 42, 2274–2279 (1971).

    CAS  Google Scholar 

  96. Govorov, A. O., Zhang, H., Demir, H. V. & Gun'ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 9, 85–101 (2014).

    CAS  Google Scholar 

  97. Sobhani, A et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Commun. 4, 1643 (2013).

    Google Scholar 

  98. Chalabi, H., Schoen, D. & Brongersma, M. L. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

    CAS  Google Scholar 

  99. Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces. Surf. Interface Anal. 1, 2–11 (1979).

    CAS  Google Scholar 

  100. Gaylord, T. K. & Brennan, K. F. Electron wave optics in semiconductors. J. Appl. Phys. 65, 814–820 (1989).

    Google Scholar 

  101. Ilya, G., Boris, D., Shappir, J., Khurgin, J. B. & Levy, U. Model for quantum efficiency of guided mode plasmonic enhanced silicon Schottky detectors. Preprint at http://arXiv.org/1401.2624 (2014).

  102. Chalabi, H., Schoen, D. & Brongersma, M. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

    CAS  Google Scholar 

  103. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594–28602 (2012). This paper shows the possibility to realize high responsivity photodetectors that are integrated with a Si waveguide.

    Google Scholar 

  104. Giugni, A. et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nature Nanotech. 8, 845–852 (2013).

    CAS  Google Scholar 

  105. Scales, C., Breukelaar, I., Charbonneau, R. & Berini, P. Infrared performance of symmetric surface-plasmon waveguide Schottky detectors in Si. J. Light. Technol. 29, 1852–1860 (2011).

    CAS  Google Scholar 

  106. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011). This paper demonstrates the use of plasmonic antennas to tune the spectral response of a hot carrier detector.

    CAS  Google Scholar 

  107. Knight, M., Wang, Y. & Urban, A. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett. 13, 1687–1692 (2013).

    CAS  Google Scholar 

  108. Lee, Y., Jung, C., Park, J. & Seo, H. Surface plasmon-driven hot electron flow probed with metal–semiconductor nanodiodes. Nano Lett. 11, 4251–4255 (2011).

    CAS  Google Scholar 

  109. Fang, Z. et al. Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

    CAS  Google Scholar 

  110. Shalaev, V., Douketis, C., Stuckless, J. & Moskovits, M. Light-induced kinetic effects in solids. Phys. Rev. B 53, 11388–11402 (1996).

    CAS  Google Scholar 

  111. Kovacs, D., Winter, J., Meyer, S., Wucher, A. & Diesing, D. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B 76, 235408 (2007).

    Google Scholar 

  112. Burshtein, Z. & Levinson, J. Photo-induced tunnel currents in Al–Al2O3–Au structures. Phys. Rev. B 12, 3452–3457 (1975).

    Google Scholar 

  113. Atar, F., Battal, E., Aygun, L. & Daglar, B. Plasmonically enhanced hot electron based photovoltaic device. Opt. Express 21, 7196–7201 (2013).

    Google Scholar 

  114. Wang, F. & Melosh, N. A. Power-independent wavelength determination by hot carrier collection in metal–insulator–metal devices. Nature Commun. 4, 1711 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank all of the students and postdocs in our groups who are actively involved with hot electron research. We also greatly acknowledge support from the DOE Light–Material Interactions Energy Frontier Research Centre, an Energy Frontier Research Centre funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0001293. P.N. and N.J.H. acknowledge support from the Robert A. Welch Foundation through grants C-1220 and C-1222, and also acknowledge support through the AFOSR MURI programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark L. Brongersma, Naomi J. Halas or Peter Nordlander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brongersma, M., Halas, N. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nature Nanotech 10, 25–34 (2015). https://doi.org/10.1038/nnano.2014.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing