Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How to deal with the loss in plasmonics and metamaterials

Metal losses affect the performance of every plasmonic or metamaterial structure; dealing with them will determine the degree to which these structures will find practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Energy balance in photonic and plasmonic structures.
Figure 2: Absorption of a quantum of electromagnetic energy ħω in a metal.
Figure 3: Dispersion of the real part of the dielectric permittivity ɛ of a polar crystal and the alternation of energy in it using SiC as an example.


  1. 1

    Stockman, M. Opt. Express 19, 22029–22106 (2011).

    Article  Google Scholar 

  2. 2

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  3. 3

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Nature 424, 824–830 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS  Article  Google Scholar 

  5. 5

    Brown, J. Proc. IEEE Part IV: Institution Monographs 100, 51–62 (1953).

    Google Scholar 

  6. 6

    Khurgin, J. B. & Sun, G. Appl. Phys. Lett. 99, 211106 (2011).

    Article  Google Scholar 

  7. 7

    Khurgin, J. B. & Boltasseva, A. Mater. Res. Soc. Bull. 37, 768–779 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Wu, Y. et al. Adv. Mater. 26, 6106–6110 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Hoffman, A. J. et al. Nature Mater. 6, 946–950 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Caldwell, J. D. et al. Nanophotonics (2014).

  11. 11

    Goykhman, I., Desiatov, B., Khurgin, J. B. & Levy, U. Nano Lett. 11, 2219–2224 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Linic, S., Christopher, P. & Ingram, D. B. Nature Mater. 10, 911–921 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Phys. Rev. Lett. 84, 4184–4187 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Abelès, F. (ed.) Optical Properties of Solids (North-Holland, 1972).

    Google Scholar 

  15. 15

    Pines, D. & Nozieres, P. The Theory of Quantum Liquids (W. A. Benjamin, 1966).

    Google Scholar 

  16. 16

    Mortensen, N. A., Raza, S., Wubs, M., Søndergaard, T. & Bozhevolnyi, S. I. Nature Commun. 5, 3809 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Knoesel, E., Hotzel, A., Hertel, T., Wolf, M. & Ertl, G. Surf. Sci. 368, 76–81 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Khurgin, J. B. & Sun, G. Appl. Phys. Lett. 100, 011105 (2012).

    Article  Google Scholar 

  19. 19

    Vollmer, F. & Yang, L. Nanophotonics 1, 267–291 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Khurgin, J. B. & Sun, G. Appl. Phys. Lett. 96, 181102 (2010).

    Article  Google Scholar 

Download references


This work is supported in part by the Mid-InfraRed Technologies for Health and the Environment (MIRTHE) Research Center (National Science Foundation).

Author information



Corresponding author

Correspondence to Jacob B. Khurgin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khurgin, J. How to deal with the loss in plasmonics and metamaterials. Nature Nanotech 10, 2–6 (2015).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research