Abstract
Piezoelectricity allows precise and robust conversion between electricity and mechanical force, and arises from the broken inversion symmetry in the atomic structure1,2,3. Reducing the dimensionality of bulk materials has been suggested to enhance piezoelectricity4. However, when the thickness of a material approaches a single molecular layer, the large surface energy can cause piezoelectric structures to be thermodynamically unstable5. Transition-metal dichalcogenides can retain their atomic structures down to the single-layer limit without lattice reconstruction, even under ambient conditions6. Recent calculations have predicted the existence of piezoelectricity in these two-dimensional crystals due to their broken inversion symmetry7. Here, we report experimental evidence of piezoelectricity in a free-standing single layer of molybdenum disulphide (MoS2) and a measured piezoelectric coefficient of e11 = 2.9 × 10–10 C m−1. The measurement of the intrinsic piezoelectricity in such free-standing crystals is free from substrate effects such as doping and parasitic charges. We observed a finite and zero piezoelectric response in MoS2 in odd and even number of layers, respectively, in sharp contrast to bulk piezoelectric materials. This oscillation is due to the breaking and recovery of the inversion symmetry of the two-dimensional crystal. Through the angular dependence of electromechanical coupling, we determined the two-dimensional crystal orientation. The piezoelectricity discovered in this single molecular membrane promises new applications in low-power logic switches for computing and ultrasensitive biological sensors scaled down to a single atomic unit cell8,9.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Shirane, G., Hoshino, S. & Suzuki, K. X-ray study of the phase transition in lead titanate. Phys. Rev. 80, 1105–1106 (1950).
Bernardini, F., Fiorentini, V. & Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III–V nitrides. Phys. Rev. B 56, 10024–10027 (1997).
Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).
Xiang, H. J., Yang, J., Hou, J. G. & Zhu, Q. Piezoelectricity in ZnO nanowires: a first-principles study. Appl. Phys. Lett. 89, 223111 (2006).
Li, S. P. et al. Size effects in nanostructured ferroelectrics. Phys. Lett. A 212, 341–346 (1996).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Duerloo, K-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).
Marx, K. A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4, 1099–1120 (2003).
Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).
Luo, Y. et al. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440–442 (2003).
Wang, Z. L. & Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).
Nguyen, T. D. et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nature Nanotech. 7, 587–593 (2012).
Sai, N. & Mele, E. J. Microscopic theory for nanotube piezoelectricity. Phys. Rev. B 68, 241405 (2003).
Quan, X., Marvin, C. W., Seebald, L. & Hutchison, G. R. Single-molecule piezoelectric deformation: rational design from first-principles calculations. J. Phys. Chem. C 117, 16783–16790 (2013).
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).
Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).
Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).
Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Reproduced with corrections and new material, 1985) (Clarendon, 1957).
Wang, Z., Hu, J., Suryavanshi, A. P., Yum, K. & Yu, M-F. Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007).
Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).
Gruverman, A., Auciello, O. & Tokumoto, H. Nanoscale investigation of fatigue effects in Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 69, 3191–3193 (1996).
Christman, J. A., Woolcott, R. R., Kingon, A. I. & Nemanich, R. J. Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. 73, 3851–3853 (1998).
Minary-Jolandan, M., Bernal, R. A., Kujanishvili, I., Parpoil, V. & Espinosa, H. D. Individual GaN nanowires exhibit strong piezoelectricity in 3D. Nano Lett. 12, 970–976 (2012).
Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
Pan, J. Y., Lin, P., Maseeh, F. & Senturia, S. D. Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films. Technical Digest IEEE Solid-State Sensor and Actuator Workshop (cat. no. 90CH2783–9), 70–73 (1990).
Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).
Kalinin, S. V. et al. Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy. Annu. Rev. Mater. Res. 37, 189–238 (2007).
Helveg, S. et al. Atomic-scale structure of single-layer MoS2 nanoclusters. Phys. Rev. Lett. 84, 951–954 (2000).
Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).
Naumov, I., Bratkovsky, A. M. & Ranjan, V. Unusual flexoelectric effect in two-dimensional noncentrosymmetric sp2-bonded crystals. Phys. Rev. Lett. 102, 217601 (2009).
Lopez-Suarez, M., Pruneda, M., Abadal, G. & Rurali, R. Piezoelectric monolayers as nonlinear energy harvesters. Nanotechnology 25, 175401 (2014).
Acknowledgements
This work was supported by the US Department of Energy, Basic Energy Sciences Energy Frontier Research Center (DoE-LMI-EFRC) under award DOE DE-AC02-05CH11231.
Author information
Authors and Affiliations
Contributions
X.Z., X.Y., H.Z. and Z.J.W. conceived the project. H.Z., M.L. and Y.Y. developed the sample design and fabricated the samples. H.Z. and Y.W. performed the measurements. H.Z., S.X. and Z.J.W. carried out the mechanical analysis. J.X., H.Z. and Z.Y. performed the optical measurements. H.Z. and Z.Y. conducted electrical analysis. All authors contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary Information (PDF 543 kb)
Rights and permissions
About this article
Cite this article
Zhu, H., Wang, Y., Xiao, J. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nature Nanotech 10, 151–155 (2015). https://doi.org/10.1038/nnano.2014.309
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2014.309
This article is cited by
-
A new 2D Janus family with multiple properties: auxetic behavior, straintunable photocatalyst, high Curie temperature ferromagnets, and piezoelectric quantum anomalous Hall insulator
Science China Materials (2024)
-
Origin of electrically induced defects in monolayer MoS2 grown by chemical vapor deposition
Communications Materials (2023)
-
Variant Plateau’s law in atomically thin transition metal dichalcogenide dome networks
Nature Communications (2023)
-
Synthesis and enhanced piezoelectric response of CVD-grown SnSe layered nanosheets for flexible nanogenerators
Nano Research (2023)
-
Designing two-dimensional ferroelectric materials from phosphorus-analogue structures
Nano Research (2023)