All-electric all-semiconductor spin field-effect transistors


The spin field-effect transistor envisioned by Datta and Das1 opens a gateway to spin information processing2,3. Although the coherent manipulation of electron spins in semiconductors is now possible4,5,6,7,8, the realization of a functional spin field-effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch9, spin relaxation and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed10,11, but these differ from the field-effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field-effect transistor in which these obstacles are overcome by using two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin–orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins (spin injection, manipulation and detection) in a purely electrical manner. Such a device is compatible with large-scale integration and holds promise for future spintronic devices for information processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: All-electric all-semiconductor spin FET.
Figure 2: Oscillating on/off switch of the spin FET.
Figure 3: Influence of QPC conductance and temperature on the operation of spin FETs.
Figure 4: Simultaneous electrical and magnetic control of spin precession.


  1. 1

    Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

  2. 2

    Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  3. 3

    Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

  4. 4

    Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

  5. 5

    Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

  6. 6

    Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

  7. 7

    Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

  8. 8

    Kum, H. et al. Room temperature single GaN nanowire spin valves with FeCo/MgO tunnel contacts. Appl. Phys. Lett. 100, 182407 (2012).

  9. 9

    Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790 (2000).

  10. 10

    Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

  11. 11

    Betthausen, C. et al. Spin-transistor action via tunable Landau–Zener transitions. Science 337, 324–327 (2012).

  12. 12

    Rashba, E. I. Properties of semiconductors with an extremum loop I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

  13. 13

    Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

  14. 14

    Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

  15. 15

    Koga, T., Nitta, J., Akazaki, T. & Takayanagi, H. Rashba spin–orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys. Rev. Lett. 89, 046801 (2002).

  16. 16

    Thomas, K. J. et al. Possible spin polarization in a one-dimensional electron gas. Phys. Rev. Lett. 77, 135–138 (1996).

  17. 17

    Bauer, F. et al. Microscopic origin of the ‘0.7-anomaly’ in quantum point contacts. Nature 501, 73–78 (2013).

  18. 18

    Iqbal, M. J. et al. Odd and even Kondo effects from emergent localization in quantum point contacts. Nature 501, 79–83 (2013).

  19. 19

    Debray, P. et al. All-electric quantum point contact spin-polarizer. Nature Nanotech. 4, 759–764 (2009).

  20. 20

    Wan, J., Cahay, M., Debray, P. & Newrock, R. Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts. Phys. Rev. B 80, 155440 (2009).

  21. 21

    Quay, C. H. L. et al. Observation of a one-dimensional spin–orbit gap in a quantum wire. Nature Phys. 6, 336–339 (2010).

  22. 22

    Nowak, M. P. & Szafran, B. Spin current source based on a quantum point contact with local spin–orbit interaction. Appl. Phys. Lett. 103, 202404 (2013).

  23. 23

    Chen, T. M., Graham, A. C., Pepper, M., Farrer, I. & Ritchie, D. A. Bias-controlled spin polarization in quantum wires. Appl. Phys. Lett. 93, 032102 (2008).

  24. 24

    Chen, T. M., Pepper, M., Farrer, I., Jones, G. A. C. & Ritchie, D. A. All-electrical injection and detection of a spin-polarized current using 1D conductors. Phys. Rev. Lett. 109, 177202 (2012).

  25. 25

    Moroz, A. V. & Barnes, C. H. W. Effect of the spin–orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys. Rev. B 60, 14272 (1999).

  26. 26

    D'yakonov, M. I. & Perel', V. I. On spin orientation of electrons in interband absorption of light in semiconductors. Zh. Eksp. Teor. Fiz. 60, 1954–1965 (1971). [Sov. Phys. JETP 33, 1053 (1971)].

  27. 27

    D'yakonov, M. I. & Kachorovskii, V. Y. Spin relaxation of two-dimensional electrons in noncentrosymetric semiconductors. Sov. Phys. Semicond. 20, 110–112 (1986).

  28. 28

    Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

  29. 29

    Serra, L., Sánchez, D. & López, R. Rashba interaction in quantum wires with in-plane magnetic fields. Phys. Rev. B 72, 235309 (2005).

  30. 30

    Simmonds, P. J. et al. Quantum transport in In0.75Ga0.25As quantum wires. Appl. Phys. Lett. 92, 152108 (2008).

  31. 31

    Sugahara, S. & Nitta, J. Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010).

Download references


The authors thank C-W. Chang, C-C. Cheng, M. Fletcher, S.N. Holmes, C-T. Liang, S-T. Lo and J.R. Petta for discussions and/or technical assistance regarding device fabrication and measurements. This work was supported by the Ministry of Science and Technology (Taiwan), the Headquarters of University Advancement at the National Cheng Kung University, and the Engineering and Physical Sciences Research Council (UK).

Author information

P.C. and S-C.H. performed the measurements and analysed the data, with participation from T-M.C. L.W.S. fabricated the devices with contributions from F.S., M.P. and T-M.C. I.F., H.E.B. and D.A.R. provided wafers. J.P.G. and G.A.C.J. performed electron-beam lithography. C.H.C. and J.C.F. contributed some measurements. T-M.C. wrote the paper with input from S-C.H., L.W.S., F.S. and M.P. T-M.C. designed and coordinated the project.

Correspondence to Tse-Ming Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 384 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chuang, P., Ho, S., Smith, L. et al. All-electric all-semiconductor spin field-effect transistors. Nature Nanotech 10, 35–39 (2015).

Download citation

Further reading