Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor


Magnetic resonance imaging, with its ability to provide three-dimensional, elementally selective imaging without radiation damage, has had a revolutionary impact in many fields, especially medicine and the neurosciences. Although challenging, its extension to the nanometre scale could provide a powerful new tool for the nanosciences, especially if it can provide a means for non-destructively visualizing the full three-dimensional morphology of complex nanostructures, including biomolecules1. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques2. One successful example is magnetic resonance force microscopy3,4, which has demonstrated three-dimensional imaging of proton NMR with resolution on the order of 10 nm, but with the requirement of operating at cryogenic temperatures5,6. Nitrogen–vacancy (NV) centres in diamond offer an alternative detection strategy for nanoscale magnetic resonance imaging that is operable at room temperature7. Here, we demonstrate two-dimensional imaging of 1H NMR from a polymer test sample using a single NV centre in diamond as the sensor. The NV centre detects the oscillating magnetic field from precessing protons as the sample is scanned past the NV centre. A spatial resolution of 12 nm is shown, limited primarily by the scan resolution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Basic elements of the NMR imaging experiment.
Figure 2: NV coherence in the presence of nearby protons.
Figure 3: Representative line scans showing the NMR signal as a function of position.
Figure 4: Two-dimensional NMR images.
Figure 5: Calculated point spread function (PSF) for a 10-nm-deep NV.


  1. 1

    Sidles, J. A. et al. Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Glover, P. & Mansfield, S. P. Limits to magnetic resonance microscopy. Rep. Prog. Phys. 65, 1489–1511 (2002).

    Article  Google Scholar 

  3. 3

    Poggio, M. & Degen, C. L. Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21, 342001 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Kuehn, S., Hickman, S. A. & Marohn, J. A. Advances in mechanical detection of magnetic resonance. J. Chem. Phys. 128, 052208 (2008).

    Article  Google Scholar 

  5. 5

    Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Nichol, J. M., Naibert, T. R., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanoscale Fourier-transform magnetic resonance imaging. Phys. Rev. X 3, 031016 (2013).

    Google Scholar 

  7. 7

    Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  Google Scholar 

  8. 8

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Dobrovitski, V. V., Fuchs, G. D., Falk, A. L., Santori, C. & Awschalom, D. D. Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys. 4, 23–50 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Grotz, B. et al. Sensing external spins with nitrogen–vacancy diamond. New J. Phys. 13, 055004 (2011).

    Article  Google Scholar 

  13. 13

    Mamin, H. J., Sherwood, M. H. & Rugar, D. Detecting external electrons spins using nitrogen–vacancy centers. Phys. Rev. B 86, 195422 (2012).

    Article  Google Scholar 

  14. 14

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen–vacancy spin sensor. Science 339, 557–560 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Zhao, N., Honert, J., Schmid, B., Isoya, J. & Markham, M. Sensing remote nuclear spins. Nature Nanotech. 7, 657–662 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Kolkowitz, S., Unterreithmeier, Q., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin via dynamical decoupling. Phys. Rev. Lett. 109, 137601 (2012).

    Article  Google Scholar 

  19. 19

    Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen–vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014).

    Article  Google Scholar 

  20. 20

    Ohashi, K. et al. Negatively charged nitrogen–vacancy centers in a 5 nm thin 12C diamond film. Nano Lett. 13, 4733–4738 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nature Phys. 7, 789–793 (2011).

    Article  Google Scholar 

  22. 22

    Pham, L. et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Bull. Am. Phys. Soc. 59, C6.00007 (2014).

    Google Scholar 

  23. 23

    Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Müller, C. et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nature Commun. 5, 4703 (2014).

    Article  Google Scholar 

  25. 25

    Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech. 9, 279–284 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Gullion, T., Baker, D. B. & Conradi, M. S. New compensated Carr–Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).

    CAS  Google Scholar 

  28. 28

    Rosskopf, T. et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys. Rev. Lett. 112, 147602 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Mamin, H. J. et al. Multipulse double-quantum magnetometry with near-surface nitrogen– vacancy centers. Phys. Rev. Lett. 113, 030803 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Mamin, H. J., Rettner, C. T., Sherwood, M. H., Gao, L. & Rugar, D. High field-gradient dysprosium tips for magnetic resonance force microscopy. Appl. Phys. Lett. 100, 013102 (2012).

    Article  Google Scholar 

  34. 34

    Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85, 054414 (2012).

    Article  Google Scholar 

  35. 35

    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    CAS  Article  Google Scholar 

  36. 36

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  Google Scholar 

Download references


The authors thank B. Myers and A. Jayich for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) QuASAR programme, the Air Force Office of Scientific Research, the Center for Probing the Nanoscale at Stanford University (National Science Foundation grant PHY-0830228) and the IBM Corporation.

Author information




D.R. and H.J.M. built the apparatus, performed the imaging experiments and analysed the data. M.H.S. prepared the PMMA sample, annealed and acid-cleaned the diamond, and provided temperature control. M.K. tested NV diamond samples and the scanning apparatus. K.O. and D.D.A. synthesized and characterized carbon-12 diamond layers. C.T.R. fabricated microwires. D.R. wrote the manuscript and incorporated comments from all authors.

Corresponding author

Correspondence to D. Rugar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 662 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rugar, D., Mamin, H., Sherwood, M. et al. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotech 10, 120–124 (2015).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research