Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of quantum magnets by atomic exchange bias

Abstract

Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets1,2. The exchange bias field3,4 has been proposed as a mechanism for localized control of individual nanomagnets5,6. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump–probe spectroscopy7, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spin relaxation time variations of an Fe trimer.
Figure 2: Exchange interaction control of the spin relaxation time.
Figure 3: Model for the local exchange bias field of the magnetic tip.
Figure 4: Spin state control using the tip-induced exchange bias field.

References

  1. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    CAS  Article  Google Scholar 

  2. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    CAS  Article  Google Scholar 

  3. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  4. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS  Article  Google Scholar 

  5. Wieser, R. et al. A theoretical study of the dynamical switching of a single spin by exchange forces. New J. Phys. 15, 013011 (2013).

    Article  Google Scholar 

  6. Tao, K. et al. Switching a single spin on metal surfaces by a STM tip: ab initio studies. Phys. Rev. Lett. 103, 057202 (2009).

    Article  Google Scholar 

  7. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628–1630 (2010).

    CAS  Article  Google Scholar 

  8. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  Google Scholar 

  9. Meier, F., Levy, J. & Loss, D. Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90, 047901 (2003).

    Article  Google Scholar 

  10. McEnroe, S. A. et al. Magnetic exchange bias of more than 1 tesla in a natural mineral intergrowth. Nature Nanotech. 2, 631–634 (2007).

    CAS  Article  Google Scholar 

  11. Kaiser, U., Schwarz, A. & Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 446, 522–525 (2007).

    CAS  Article  Google Scholar 

  12. Schmidt, R. et al. Quantitative measurement of the magnetic exchange interaction across a vacuum gap. Phys. Rev. Lett. 106, 257202 (2011).

    CAS  Article  Google Scholar 

  13. Bork, J. et al. A tunable two-impurity Kondo system in an atomic point contact. Nature Phys. 7, 901–906 (2011).

    CAS  Article  Google Scholar 

  14. Lazo, C. & Heinze, S. First-principles study of magnetic exchange force microscopy with ferromagnetic and antiferromagnetic tips. Phys. Rev. B 84, 144428 (2011).

    Article  Google Scholar 

  15. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    CAS  Article  Google Scholar 

  16. Khajetoorians, A. A. et al. Current-driven spin dynamics of artificially constructed quantum magnets. Science 339, 55–59 (2013).

    CAS  Article  Google Scholar 

  17. Heinrich, B. W., Braun, L., Pascual, J. I. & Franke, K. J. Protection of excited spin states by a superconducting energy gap. Nature Phys. 9, 765–768 (2013).

    CAS  Article  Google Scholar 

  18. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    CAS  Article  Google Scholar 

  19. Bryant, B., Spinelli, A., Wagenaar, J. J. T., Gerrits, M. & Otte, A. F. Local control of single atom magnetocrystalline anisotropy. Phys. Rev. Lett. 111, 127203 (2013).

    CAS  Article  Google Scholar 

  20. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    CAS  Article  Google Scholar 

  21. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    CAS  Article  Google Scholar 

  22. Loth, S. et al. Controlling the state of quantum spins with electric currents. Nature Phys. 6, 340–344 (2010).

    CAS  Article  Google Scholar 

  23. Delgado, F. & Fernández-Rossier, J. Spin dynamics of current-driven single magnetic adatoms and molecules. Phys. Rev. B 82, 134414 (2010).

    Article  Google Scholar 

  24. Oberg, J. C. et al. Control of single-spin magnetic anisotropy by exchange coupling. Nature Nanotech. 9, 64–68 (2014).

    CAS  Article  Google Scholar 

  25. Otte, A F. et al. Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. Phys. Rev. Lett. 103, 107203 (2009).

    CAS  Article  Google Scholar 

  26. Weymouth, A. J., Hofmann, T. & Giessibl, F. J. Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014).

    CAS  Article  Google Scholar 

  27. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Heinze, C. Hübner and D. Pfannkuche for discussions, and E. Weckert and H. Dosch (Deutsches Elektronen-Synchrotron) for providing laboratory space. D.J.C. and J.A.J.B. acknowledge postdoctoral fellowships from the Alexander von Humboldt Foundation. J.A.J.B. acknowledges support from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and S.L. conceived the experiment. S.Y. carried out the experiments and performed the analysis and calculations. All authors participated in the experimental work and contributed to writing the manuscript.

Corresponding authors

Correspondence to Shichao Yan or Sebastian Loth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 777 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Choi, DJ., Burgess, J. et al. Control of quantum magnets by atomic exchange bias. Nature Nanotech 10, 40–45 (2015). https://doi.org/10.1038/nnano.2014.281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.281

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research