Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continuous observation of the stochastic motion of an individual small-molecule walker

Abstract

Motion—whether it the ability to change shape, rotate or translate—is an important potential asset for functional nanostructures. For translational motion, a variety of DNA-based and small-molecule walkers have been created, but observing the translational motion of individual molecules in real time remains a significant challenge. Here, we show that the movement of a small-molecule walker along a five-foothold track can be monitored continuously within a protein nanoreactor. The walker is an organoarsenic(III) molecule with exchangeable thiol ligands, and the track a line of cysteine residues 6 Å apart within an α-haemolysin protein pore that acts as the nanoreactor. Changes in the flow of ionic current through the pore reflect the individual steps of a single walker, which require the making and breaking of As–S bonds, and occur in aqueous solution at neutral pH and room temperature. The walker moves considerably faster (0.7 s per step) than previous walkers based on covalent chemistry and is weakly processive (6 ± 1 steps per outing). It shows weak net directional movement, which can be described by a thermodynamic sink arising from the different environments of the cysteines that constitute the track.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The walker and its track.
Figure 2: Electrical recordings of αHL pores containing a single-Cys residue in the presence of SPAA–MEET2.
Figure 3: Comparison of the reaction of SPAA–MEET2 with single-Cys and double-Cys mutant αHL pores.
Figure 4: Electrical recordings of αHL pores containing double-Cys mutations in the presence of SPAA–MEET2.
Figure 5: Electrical recordings of an αHL pore containing a triple-Cys mutation in the presence of SPAA–MEET2.
Figure 6: Electrical recordings of the αHL pore containing a five-Cys track in the presence of SPAA–MEET2.

Similar content being viewed by others

References

  1. Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).

    Article  CAS  Google Scholar 

  2. Shirai, Y., Osgood, A. J., Zhao, Y. M., Kelly, K. F. & Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).

    Article  CAS  Google Scholar 

  3. Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  4. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  5. Lagzi, I., Soh, S., Wesson, P. J., Browne, K. P. & Grzybowski, B. A. Maze solving by chemotactic droplets. J. Am. Chem. Soc. 132, 1198–1199 (2010).

    Article  CAS  Google Scholar 

  6. Sanchez, S. & Pumera, M. Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. Chem. Asian J. 4, 1402–1410 (2009).

    Article  CAS  Google Scholar 

  7. Kelly, T. R. Molecular motors: synthetic DNA-based walkers inspired by kinesin. Angew. Chem. Int. Ed. 44, 4124–4127 (2005).

    Article  CAS  Google Scholar 

  8. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  9. Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotech. 6, 166–169 (2011).

    Article  CAS  Google Scholar 

  10. Wollman, A. J., Sanchez-Cano, C., Carstairs, H. M., Cross, R. A. & Turberfield, A. J. Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nature Nanotech. 9, 44–47 (2014).

    Article  CAS  Google Scholar 

  11. Leigh, D. A., Lewandowska, U., Lewandowski, B. & Wilson, M. R. Synthetic molecular walkers. Top. Curr. Chem, 354, 111–138 (2014).

    Article  CAS  Google Scholar 

  12. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  13. Mitra, S. & Lawton, R. G. Reagents for the cross-linking of proteins by equilibrium transfer alkylation. J. Am. Chem. Soc. 101, 3097–3110 (1979).

    Article  CAS  Google Scholar 

  14. Liberatore, F. A. et al. Site-directed chemical modification and cross-linking of a monoclonal antibody using equilibrium transfer alkylating cross-link reagents. Bioconj. Chem. 1, 36–50 (1990).

    Article  CAS  Google Scholar 

  15. Campana, A. G. et al. A small molecule that walks non-directionally along a track without external intervention. Angew. Chem. Int. Ed. 51, 5480–5483 (2012).

    Article  CAS  Google Scholar 

  16. Campana, A. G., Leigh, D. A. & Lewandowska, U. One-dimensional random walk of a synthetic small molecule toward a thermodynamic sink. J. Am. Chem. Soc. 135, 8639–8645 (2013).

    Article  CAS  Google Scholar 

  17. Barrell, M. J., Campana, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

    Article  CAS  Google Scholar 

  18. Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  19. Cheng, Z. et al. Tunability in polyatomic molecule diffusion through tunneling versus pacing. J. Am. Chem. Soc. 132, 13578–13581 (2010).

    Article  CAS  Google Scholar 

  20. Kwon, K. Y. et al. Unidirectional adsorbate motion on a high-symmetry surface: ‘walking’ molecules can stay the course. Phys. Rev. Lett. 95, 166101 (2005).

    Article  Google Scholar 

  21. Masoud, R. et al. Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy. ACS Nano 6, 6272–6283 (2012).

    Article  CAS  Google Scholar 

  22. Cha, T. G. et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nature Nanotech. 9, 39–43 (2014).

    Article  CAS  Google Scholar 

  23. Bayley, H., Luchian, T., Shin, S. H. & Steffensen, M. in Single Molecules and Nanotechnology (eds Rigler, R. & Vogel, H.) Ch. 10, 251–277 (Springer, 2008).

  24. Luchian, T., Shin, S. H. & Bayley, H. Kinetics of a three-step reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 42, 1925–1929 (2003).

    Google Scholar 

  25. Loudwig, S. & Bayley, H. Photoisomerization of an individual azobenzene molecule in water: An on–off switch triggered by light at a fixed wavelength. J. Am. Chem. Soc. 128, 12404–12405 (2006).

    Article  CAS  Google Scholar 

  26. Luchian, T., Shin, S. H. & Bayley, H. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    Article  CAS  Google Scholar 

  27. Shin, S. H. & Bayley, H. Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127, 10462–10463 (2005).

    Article  CAS  Google Scholar 

  28. Choi, L. S., Mach, T. & Bayley, H. Rates and stoichiometries of metal ion probes of cysteine residues within ion channels. Biophys. J. 105, 356–384 (2013).

    Article  CAS  Google Scholar 

  29. Hammerstein, A. F., Shin, S. H. & Bayley, H. Single-molecule kinetics of two-step divalent cation chelation. Angew. Chem. Int. Ed. 49, 5085–5090 (2010).

    Article  CAS  Google Scholar 

  30. Lu, S. R., Li, W. W., Rotem, D., Mikhailova, E. & Bayley, H. A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nature Chem. 2, 921–928 (2010).

    Article  CAS  Google Scholar 

  31. Choi, L. S. & Bayley, H. S-Nitrosothiol chemistry at the single-molecule level. Angew. Chem. Int. Ed. 51, 7972–7976 (2012).

    Article  CAS  Google Scholar 

  32. Shin, S. H., Steffensen, M. B., Claridge, T. D. & Bayley, H. Formation of a chiral center and pyrimidal inversion at the single-molecule level. Angew. Chem. Int. Ed. 46, 7412–7416 (2007).

    Article  CAS  Google Scholar 

  33. Shin, S. H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 41, 3707–3709; 3523 (2002).

  34. Milescu, L. S., Nicolai, C. & Bannen, J. QuB software (2000–2013); http://www.qub.buffalo.edu

  35. Richard, E. A. & Miller, C. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247, 1208–1210 (1990).

    Article  CAS  Google Scholar 

  36. Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  37. Halford, S. E. An end to 40 years of mistakes in DNA–protein association kinetics? Biochem. Soc. Trans. 37, 343–348 (2009).

    Article  CAS  Google Scholar 

  38. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an European Research Council Advanced Grant. G.S.P. was supported by an International Incoming Fellow–Marie Curie Actions Grant. L-S. Choi was the recipient of a University of Oxford Croucher Scholarship (UOCS). The authors thank I. Leung for his guidance with NMR measurements.

Author information

Authors and Affiliations

Authors

Contributions

G.S.P. designed and performed experiments, analysed data and wrote the paper. E.M. prepared the protein samples. L.C. synthesized the molecular walker and performed experiments. H.B. designed experiments, analysed data and wrote the paper.

Corresponding authors

Correspondence to Gökçe Su Pulcu or Hagan Bayley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 897 kb)

Supplementary information

Supplementary Movie 1 (AVI 25552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulcu, G., Mikhailova, E., Choi, LS. et al. Continuous observation of the stochastic motion of an individual small-molecule walker. Nature Nanotech 10, 76–83 (2015). https://doi.org/10.1038/nnano.2014.264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing