Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-powered autonomous and directional molecular motion of a dissipative self-assembling system


Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and operation of the system.
Figure 2: Kinetic and thermodynamic characterization of the self-assembly process.
Figure 3: Square cycle of chemical and photochemical reactions representing operation of the system.
Figure 4: Observation of photostationary cycling of the system away from equilibrium.


  1. 1

    Jones, R. A. L. Soft Machines: Nanotechnology and Life (Oxford Univ. Press, 2008).

    Google Scholar 

  2. 2

    Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, 2003).

    Google Scholar 

  3. 3

    Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines—Concepts and Perspectives for the Nanoworld (Wiley-VCH, 2008).

    Book  Google Scholar 

  4. 4

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Grzybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Mann, S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 47, 5306–5320 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Lehn, J-M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Van Dongen, S. F. M. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nature Chem. 5, 945–951 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Blanco, V., Leigh, D. A., Marcos, V., Morales-Serna, J. A. & Nussbaumer, A. L. A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. J. Am. Chem. Soc. 136, 4905–4908 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Chen, K-Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3324 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nature Chem. 4, 456–460 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nature Chem. 6, 229–235 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Photoactivated directionally controlled transit of a non-symmetric molecular axle through a macrocycle. Angew. Chem. Int. Ed. 51, 4223–4226 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Haberhauer, G. A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Li, H. et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Davidson, G. J. E., Loeb, S. J., Passaniti, P., Silvi, S. & Credi, A. Wire-type ruthenium (II) complexes with terpyridine-containing [2]rotaxanes as ligands: synthesis, characterization, and photophysical properties. Chem. Eur. J. 12, 3233–3242 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Ashton, P. R. et al. Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl. 34, 1865–1869 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Geertsema, E. M., van der Molen, S. J., Martens, M. & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring-axle molecular system. Chem. Eur. J. 16, 11580–11587 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nature Nanotech. 7, 684–688 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Lehn, J-M. Conjecture: imines as unidirectional photodriven molecular motors—motional and constitutional dynamic devices. Chem. Eur. J. 12, 5910–5915 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Greb, L. & Lehn, J-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Serreli, V., Lee, C-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

    Article  Google Scholar 

  36. 36

    Credi, A. & Prodi, L. Inner filter effects and other traps in quantitative spectrofluorimetric measurements: origins and methods of correction. J. Mol. Struct. 1077, 30–39 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  40. 40

    Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).

    CAS  Article  Google Scholar 

  42. 42

    Bennett, I. M. et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420, 398–401 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Zhang, H. et al. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 135, 16102–16110 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Xie, X., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chem. 6, 202–207 (2014).

    CAS  Article  Google Scholar 

  45. 45

    Arduini, A. et al. Self-assembly of a double calix[6]arene pseudorotaxane in oriented channels. Chem. Eur. J. 14, 98–106 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Bussolati, R. et al. Hierarchical self-assembly of amphiphilic calix[6]arene wheels and viologen axles in water. Org. Biomol. Chem. 11, 5944–5953 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Arduini, A. et al. Towards controlling the threading direction of a calix[6]arene wheel by using nonsymmetric axles. Chem. Eur. J. 15, 3230–3242 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Arduini, A. et al. Toward directionally controlled molecular motions and kinetic intra- and intermolecular self-sorting: threading processes of nonsymmetric wheel and axle components. J. Am. Chem. Soc. 135, 9924–9930 (2013).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Italian Ministry of Education, University and Research (PRIN 2010CX2TLM) and the University of Bologna (FARB SLaMM project). The authors thank F. Zerbetto and D. Astumian for discussions.

Author information




M.B. synthesized the compounds. G.R., S.S. and M.B. performed the physico-chemical experiments. G.R. carried out numerical simulations. A.C. conceived the project and wrote the paper. M.V. discussed the results and commented on the manuscript, together with all authors.

Corresponding author

Correspondence to Alberto Credi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3260 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ragazzon, G., Baroncini, M., Silvi, S. et al. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech 10, 70–75 (2015).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research