Abstract
Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Light-activated photodeformable supramolecular dissipative self-assemblies
Nature Communications Open Access 09 June 2022
-
A light-fuelled nanoratchet shifts a coupled chemical equilibrium
Nature Nanotechnology Open Access 16 December 2021
-
Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis
Nature Communications Open Access 11 February 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




References
Jones, R. A. L. Soft Machines: Nanotechnology and Life (Oxford Univ. Press, 2008).
Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, 2003).
Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines—Concepts and Perspectives for the Nanoworld (Wiley-VCH, 2008).
Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).
Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).
Grzybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009).
Mann, S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 47, 5306–5320 (2008).
Lehn, J-M. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).
Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).
Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).
Van Dongen, S. F. M. et al. A clamp-like biohybrid catalyst for DNA oxidation. Nature Chem. 5, 945–951 (2013).
Blanco, V., Leigh, D. A., Marcos, V., Morales-Serna, J. A. & Nussbaumer, A. L. A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. J. Am. Chem. Soc. 136, 4905–4908 (2014).
Chen, K-Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3324 (2014).
Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nature Chem. 4, 456–460 (2012).
Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).
Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nature Chem. 6, 229–235 (2014).
Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).
Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).
Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Photoactivated directionally controlled transit of a non-symmetric molecular axle through a macrocycle. Angew. Chem. Int. Ed. 51, 4223–4226 (2012).
Haberhauer, G. A molecular four-stroke motor. Angew. Chem. Int. Ed. 50, 6415–6418 (2011).
Li, H. et al. Relative unidirectional translation in an artificial molecular assembly fueled by light. J. Am. Chem. Soc. 135, 18609–18620 (2013).
Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).
Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).
Davidson, G. J. E., Loeb, S. J., Passaniti, P., Silvi, S. & Credi, A. Wire-type ruthenium (II) complexes with terpyridine-containing [2]rotaxanes as ligands: synthesis, characterization, and photophysical properties. Chem. Eur. J. 12, 3233–3242 (2006).
Ashton, P. R. et al. Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl. 34, 1865–1869 (1995).
Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).
Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).
Geertsema, E. M., van der Molen, S. J., Martens, M. & Feringa, B. L. Optimizing rotary processes in synthetic molecular motors. Proc. Natl Acad. Sci. USA 106, 16919–16924 (2009).
Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).
Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring-axle molecular system. Chem. Eur. J. 16, 11580–11587 (2010).
Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nature Nanotech. 7, 684–688 (2012).
Lehn, J-M. Conjecture: imines as unidirectional photodriven molecular motors—motional and constitutional dynamic devices. Chem. Eur. J. 12, 5910–5915 (2006).
Greb, L. & Lehn, J-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).
Serreli, V., Lee, C-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).
Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. & Slawin, A. M. Z. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).
Credi, A. & Prodi, L. Inner filter effects and other traps in quantitative spectrofluorimetric measurements: origins and methods of correction. J. Mol. Struct. 1077, 30–39 (2014).
Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).
Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).
Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).
Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).
Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).
Bennett, I. M. et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420, 398–401 (2002).
Zhang, H. et al. Bioinspired artificial single ion pump. J. Am. Chem. Soc. 135, 16102–16110 (2013).
Xie, X., Crespo, G. A., Mistlberger, G. & Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nature Chem. 6, 202–207 (2014).
Arduini, A. et al. Self-assembly of a double calix[6]arene pseudorotaxane in oriented channels. Chem. Eur. J. 14, 98–106 (2008).
Bussolati, R. et al. Hierarchical self-assembly of amphiphilic calix[6]arene wheels and viologen axles in water. Org. Biomol. Chem. 11, 5944–5953 (2013).
Arduini, A. et al. Towards controlling the threading direction of a calix[6]arene wheel by using nonsymmetric axles. Chem. Eur. J. 15, 3230–3242 (2009).
Arduini, A. et al. Toward directionally controlled molecular motions and kinetic intra- and intermolecular self-sorting: threading processes of nonsymmetric wheel and axle components. J. Am. Chem. Soc. 135, 9924–9930 (2013).
Acknowledgements
This work was supported by the Italian Ministry of Education, University and Research (PRIN 2010CX2TLM) and the University of Bologna (FARB SLaMM project). The authors thank F. Zerbetto and D. Astumian for discussions.
Author information
Authors and Affiliations
Contributions
M.B. synthesized the compounds. G.R., S.S. and M.B. performed the physico-chemical experiments. G.R. carried out numerical simulations. A.C. conceived the project and wrote the paper. M.V. discussed the results and commented on the manuscript, together with all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary Information (PDF 3260 kb)
Rights and permissions
About this article
Cite this article
Ragazzon, G., Baroncini, M., Silvi, S. et al. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech 10, 70–75 (2015). https://doi.org/10.1038/nnano.2014.260
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2014.260
This article is cited by
-
Light-activated photodeformable supramolecular dissipative self-assemblies
Nature Communications (2022)
-
A light-fuelled nanoratchet shifts a coupled chemical equilibrium
Nature Nanotechnology (2022)
-
Moving forward in the semantic soup of artificial molecular machine taxonomy
Nature Nanotechnology (2022)
-
Measuring how effectively light drives a molecular pump
Nature Nanotechnology (2022)
-
Insights from an information thermodynamics analysis of a synthetic molecular motor
Nature Chemistry (2022)