Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale spin rectifiers controlled by the Stark effect

Abstract

The control of orbitals and spin states of single electrons is a key ingredient for quantum information processing1,2,3,4,5 and novel detection schemes6,7,8 and is, more generally, of great relevance for spintronics9. Coulomb10 and spin blockade11 in double quantum dots12 enable advanced single-spin operations that would be available even for room-temperature applications with sufficiently small devices13. To date, however, spin operations in double quantum dots have typically been observed at sub-kelvin temperatures, a key reason being that it is very challenging to scale a double quantum dot system while retaining independent field-effect control of individual dots. Here, we show that the quantum-confined Stark effect allows two dots only 5 nm apart to be independently addressed without the requirement for aligned nanometre-sized local gating. We thus demonstrate a scalable method to fully control a double quantum dot device, regardless of its physical size. In the present implementation we present InAs/InP nanowire double quantum dots that display an experimentally detectable spin blockade up to 10 K. We also report and discuss an unexpected re-entrant spin blockade lifting as a function of the magnetic field intensity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stark effect in a DQD.
Figure 2: Tuning spin blockade with the Stark effect.
Figure 3: Finite-bias breakdown of spin blockade.
Figure 4: Re-entrant magnetic lifting of the spin blockade.
Figure 5: Coupling oscillation in finite-size tunnelling.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  2. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  3. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  4. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  5. Nadj-Perge, S. et al. Spectroscopy of spin–orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108, 166801 (2012).

    Article  CAS  Google Scholar 

  6. Wabnig, J. & Lovett, B. W. A quantum dot single spin meter. New J. Phys. 11, 043031 (2009).

    Article  Google Scholar 

  7. Giavaras, G., Wabnig, J., Lovett, B. W., Jefferson, J. H. & Briggs, G. A. D. Spin detection at elevated temperatures using a driven double quantum dot. Phys. Rev. B 82, 085410 (2010).

    Article  Google Scholar 

  8. Chorley, S. J. et al. Transport spectroscopy of an impurity spin in a carbon nanotube double quantum dot. Phys. Rev. Lett. 106, 206801 (2011).

    Article  CAS  Google Scholar 

  9. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  10. Averin, D. V. & Likharev, K. K. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J. Low. Temp. Phys. 62, 345–373 (1986).

    Article  Google Scholar 

  11. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  12. Van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003).

    Article  CAS  Google Scholar 

  13. Postma, H. W. C., Teepen, T., Yao, Z., Grifoni, M. & Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 293, 76–79 (2001).

    Article  CAS  Google Scholar 

  14. Danon, J. & Nazarov, Yu. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301R (2009).

    Article  Google Scholar 

  15. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  16. Pribiag, V. S. et al. Electrical control of single hole spins in nanowire quantum dots. Nature Nanotech. 8, 170–174 (2013).

    Article  CAS  Google Scholar 

  17. Nowack, K. C., Koppens, F. H. L., Nazarov, Yu. V. & Vandresypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  18. Steele, G. A. et al. Large spin–orbit coupling in carbon nanotubes. Nature Commun. 4, 1573 (2013).

    Article  CAS  Google Scholar 

  19. Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunneling in ultraclean carbon nanotubes. Nature Nanotech. 4, 363–367 (2009).

    Article  CAS  Google Scholar 

  20. Weber, B. et al. Spin blockade and exchange in Coulomb-confined double quantum dots. Nature Nanotech. 91, 430–435 (2013).

    Google Scholar 

  21. Fuhrer, A. et al. Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 7, 243–246 (2007).

    Article  CAS  Google Scholar 

  22. Bjork, M. T. et al. Few-electron quantum dots in nanowires. Nano Lett. 4, 1621–1625 (2004).

    Article  Google Scholar 

  23. Roddaro, S., Pescaglini, A., Ercolani, D., Sorba, L. & Beltram, F. Manipulation of electron orbitals in hard-wall InAs/InP nanowire quantum dots. Nano Lett. 11, 1695–1699 (2011).

    Article  CAS  Google Scholar 

  24. Romeo, L. et al. Electrostatic spin control in InAs/InP nanowire quantum dots. Nano Lett. 12, 4490–4494 (2012).

    Article  CAS  Google Scholar 

  25. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Suppression of spin relaxation in an InAs nanowire double quantum dot. Phys. Rev. Lett. 99, 036801 (2007).

    Article  CAS  Google Scholar 

  26. Golovach, V. N., Khaetskii, A. & Loss, D. Phonon induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  Google Scholar 

  27. Bellucci, D., Rontani, M., Troiani, F., Goldoni, G. & Molinari, E. Competing mechanisms for singlet–triplet transition in artificial molecules. Phys. Rev. B 69, 201308(R) (2004).

  28. Vdovin, E. E. et al. Imaging the electron wave function in self-assembled quantum dots. Science 290, 122–124 (2000).

    Article  CAS  Google Scholar 

  29. Panda, J. K. et al. Raman sensitivity to crystal structure in InAs nanowires. Appl. Phys. Lett. 100, 143101 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

M.R. acknowledges funding from FP7 Marie Curie ITN INDEX and MIUR-PRIN2012 MEMO. F.R. acknowledges partial financial support of the MIUR through FIRB project RBFR13NEA4 ‘UltraNano’. The authors thank E. Molinari for her supportive work and E. Husanu for STEM imaging.

Author information

Authors and Affiliations

Authors

Contributions

S.R. conceived and designed the experiment. D.E. and L.S. grew the nanowires and fabricated the devices. F.R. and D.E. performed the experiment. F.R., S.R., A.B. and M.R. analysed the data. All authors contributed to the writing and discussion of the manuscript.

Corresponding author

Correspondence to Stefano Roddaro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossella, F., Bertoni, A., Ercolani, D. et al. Nanoscale spin rectifiers controlled by the Stark effect. Nature Nanotech 9, 997–1001 (2014). https://doi.org/10.1038/nnano.2014.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing