Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

Abstract

High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m−1 K−1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication and overview of the mechanical, thermal and fire-retardant properties of nanocomposite foams.
Figure 2: Microstructure of freeze-cast nanocomposite foams.
Figure 3: Thermal transport properties of anisotropic nanocomposite foams.
Figure 4: Mechanical properties and crosslinking of nanocomposite foams.
Figure 5: Flame resistance of the nanocomposite foams.

References

  1. International Energy Agency. Technology Roadmap: Energy Efficient Building Envelopes (2013).

    Google Scholar 

  2. Jelle, B. P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011).

    Article  Google Scholar 

  3. Fernández, J. E. Materials for aesthetic, energy-efficient, and self-diagnostic buildings. Science 315, 1807–1810 (2007).

    Article  Google Scholar 

  4. Alam, M., Singh, H. & Limbachiya, M. C. Vacuum insulation panels (VIPs) for building construction industry—a review of the contemporary developments and future directions. Appl. Energy 88, 3592–3602 (2011).

    Article  Google Scholar 

  5. Hüsing, N. & Schubert, U. Aerogels—Airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998).

    Article  Google Scholar 

  6. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

    Article  CAS  Google Scholar 

  7. Olsson, R. T. et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotech. 5, 584–588 (2010).

    Article  CAS  Google Scholar 

  8. Hamedi, M. et al. Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew. Chem. Int. Ed. 52, 12038–12042 (2013).

    Article  CAS  Google Scholar 

  9. Kobayashi, Y., Saito, T. & Isogai, A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 53, 10394–10397 (2014).

    Article  CAS  Google Scholar 

  10. Pernot, G. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nature Mater. 9, 491–495 (2010).

    Article  CAS  Google Scholar 

  11. Huxtable, S. T. et al. Interfacial heat flow in carbon nanotube suspensions. Nature Mater. 2, 731–734 (2003).

    Article  CAS  Google Scholar 

  12. Losego, M. D., Blitz, I. P., Vaia, R. A., Cahill, D. G. & Braun, P. V. Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly. Nano Lett. 13, 2215–2219 (2013).

    Article  CAS  Google Scholar 

  13. Yu, J-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotech. 5, 718–721 (2010).

    Article  CAS  Google Scholar 

  14. Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nature Mater. 11, 502–506 (2012).

    Article  CAS  Google Scholar 

  15. Kashiwagi, T. et al. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Mater. 4, 928–933 (2005).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Flame retardant behavior of polyelectrolyte–clay thin film. ACS Nano 4, 3325–3337 (2010).

    Article  CAS  Google Scholar 

  17. Wagner, H. D. Nanocomposites: paving the way to stronger materials. Nature Nanotech. 2, 742–744 (2007).

    Article  CAS  Google Scholar 

  18. Lingström, R., Notley, S. M. & Wågberg, L. Wettability changes in the formation of polymeric multilayers on cellulose fibres and their influence on wet adhesion. J. Colloid Interface Sci. 314, 1–9 (2007).

    Article  Google Scholar 

  19. Jin, C., Jiang, Y., Niu, T. & Huang, J. Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J. Mater. Chem. 22, 12562–12567 (2012).

    Article  CAS  Google Scholar 

  20. Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    Article  CAS  Google Scholar 

  21. Gutiérrez, M., Ferrer, M. & del Monte, F. Templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634–648 (2008).

    Article  Google Scholar 

  22. Hong, C-Q., Han, J-C., Zhang, X-H. & Du, J-C. Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scr. Mater. 68, 599–602 (2013).

    Article  CAS  Google Scholar 

  23. Ali, Z. M. & Gibson, L. J. The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9, 1580–1588 (2013).

    Article  CAS  Google Scholar 

  24. Svagan, A. J., Samir, M. A. S. A. & Berglund, L. A. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008).

    Article  CAS  Google Scholar 

  25. Jiang, F. & Hsieh, Y-L. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J. Mater. Chem. A 2, 350–359 (2014).

    Article  CAS  Google Scholar 

  26. Lu, X., Arduini-Schuster, M., Kuhn, J. & Nilsson, O. Thermal conductivity of monolithic organic aerogels. Science 469, 1990–1991 (1992).

    Google Scholar 

  27. Kapitza, P. L. The study of heat transfer in helium II. J. Phys. 4, 181–210 (1941).

    Google Scholar 

  28. Han, Z. & Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011).

    Article  CAS  Google Scholar 

  29. Glicksman, L. R. in Low Density Cellular Plastics (eds Hilyard, N. C., Cunningham, A. & Glicksman, L. R.) 104–152 (Springer, 1994).

    Book  Google Scholar 

  30. Acik, M. et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Mater. 9, 840–845 (2010).

    Article  CAS  Google Scholar 

  31. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    Article  CAS  Google Scholar 

  32. Antunes, M. et al. Thermal conductivity anisotropy in polypropylene foams prepared by supercritical CO2 dissolution. Mater. Chem. Phys. 136, 268–276 (2012).

    Article  CAS  Google Scholar 

  33. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties (Cambridge Univ. Press, 1999).

    Google Scholar 

  34. Obrey, K. A. D., Wilson, K. V. & Loy, D. A. Enhancing mechanical properties of silica aerogels. J. Non-Cryst. Solids 357, 3435–3441 (2011).

    Article  CAS  Google Scholar 

  35. An, Z., Compton, O. C., Putz, K. W., Brinson, L. C. & Nguyen, S. T. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23, 3842–3846 (2011).

    CAS  Google Scholar 

  36. Pappin, B., Kiefel, M. J. & Houston, T. A. in Carbohydrates—Comprehensive studies on Glycobiology and Glycotechnology (ed. Chang, C-F.) 37–54 (Intech, 2012).

    Google Scholar 

  37. Benítez, A., Torres-Rendon, J., Poutanen, M. & Walther, A. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14, 4497−4506 (2013).

    Article  Google Scholar 

  38. Bénézet, J-C., Stanojlovic-Davidovic, A., Bergeret, A., Ferry, L. & Crespy, A. Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind. Crops Prod. 37, 435–440 (2012).

    Article  Google Scholar 

  39. Dasari, A., Yu, Z-Z., Cai, G-P. & Mai, Y-W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013).

    Article  CAS  Google Scholar 

  40. Hale, R. C. et al. Flame retardants: persistent pollutants in land-applied sludges. Nature 412, 140–141 (2001).

    Article  CAS  Google Scholar 

  41. Shaw, S. D. et al. Halogenated flame retardants: do the fire safety benefits justify the risks? Rev. Environ. Health 25, 261–305 (2010).

    Article  CAS  Google Scholar 

  42. Singh, H. & Jain, A. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. J. Appl. Polym. Sci. 111, 1115–1143 (2009).

    Article  CAS  Google Scholar 

  43. Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J. & Malucelli, G. Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. RSC Adv. 4, 16674–16680 (2014).

    Article  CAS  Google Scholar 

  44. Shi, Y. & Li, L-J. Chemically modified graphene: flame retardant or fuel for combustion? J. Mater. Chem. 21, 3277–3279 (2011).

    Article  CAS  Google Scholar 

  45. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    Article  CAS  Google Scholar 

  46. Higginbotham, A. L., Lomeda, J. R., Morgan, A. B. & Tour, J. M. Graphite oxide flame-retardant polymer nanocomposites. ACS Appl. Mater. Interfaces 1, 2256–2261 (2009).

    Article  CAS  Google Scholar 

  47. Lu, S-Y. & Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 27, 1661–1712 (2002).

    Article  CAS  Google Scholar 

  48. Byrne, G. A., Gardiner, D. & Holmes, F. H. The pyrolysis of cellulose and the action of flame-retardants. J. Appl. Chem. 16, 81–88 (1966).

    Article  CAS  Google Scholar 

  49. Fina, A., Bocchini, S. & Camino, G. Fire and polymers V. Am. Chem. Soc. 1013, 10–24 (2009).

    CAS  Google Scholar 

  50. Wågberg, L. et al. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24, 784–795 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Swedish Strategic Foundation (SSF) (grant no. RMA11-0065), the Wallenberg Wood Science Centre (WWSC) and the Swedish Research Council (VR). L.B. acknowledges support from the Humboldt Foundation and B.W. and G.S.A. thank the Cost Action MP1202 for support. L. Wågberg is thanked for providing the nanocellulose. The authors thank, L. Berglund, J. Kochumalayil, J. Yuan, D. Kocjan and J. Lagerwall for help and valuable discussions and Z. Bacsik, A. Ojuva, J. Hornatowska, P. Fajdiga, M. Vrabelj, A. Di Blasio and F. Cuttica for various contributions.

Author information

Authors and Affiliations

Authors

Contributions

B.W., G.S.A., L.B. and M.A. conceived the study and B.W. and L.B. planned and coordinated the work. A.K. performed the thermal conductivity measurements and analysed the data together with B.W. B.W. carried out and analysed the mechanical strength data. B.W., F.C. and G.C. carried out and analysed the flame retardancy measurements. B.W., G.S.A. and L.B. wrote the manuscript.

Corresponding author

Correspondence to Lennart Bergström.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1476 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 864 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 813 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 540 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wicklein, B., Kocjan, A., Salazar-Alvarez, G. et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotech 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing