Long-range charge transport in single G-quadruplex DNA molecules


DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measurement set-up and sample image.
Figure 2: IV characteristics of BA–G4-DNA.
Figure 3: Reference IV measurements on dsDNA and SWCNT.
Figure 4: The hopping transport model.


  1. 1

    Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

    Google Scholar 

  2. 2

    Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nature Nanotech. 8, 399–410 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Article  Google Scholar 

  4. 4

    Eley, D. D. & Spivey, D. I. Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state. Trans. Faraday Soc. 58, 411–415 (1962).

    CAS  Article  Google Scholar 

  5. 5

    Kumar, A., Hwang, J. H., Kumar, S. & Nam, J. M. Tuning and assembling metal nanostructures with DNA. Chem. Commun. 49, 2597–2609 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  7. 7

    Bixon, M. et al. Long-range charge hopping in DNA. Proc. Natl Acad. Sci. USA 96, 11713–11716 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Heim, T., Deresmes, D. & Vuillaume, D. Conductivity of DNA probed by conducting-atomic force microscopy: effects of contact electrode, DNA structure, and surface interactions. J. Appl. Phys. 96, 2927–2936 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Gutierrez, R., Porath, D. & Cuniberti, G. in Charge Transport in Disordered Solids with Applications in Electronics (ed. Baranovski, S.) Ch. 9, 433–464 (Wiley, 2006).

    Google Scholar 

  10. 10

    Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    CAS  Article  Google Scholar 

  11. 11

    De Pablo, P. J. et al. Absence of dc-conductivity in lambda-DNA. Phys. Rev. Lett. 85, 4992–4995 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Storm, A. J., van Noort, J., de Vries, S. & Dekker, C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett. 79, 3881–3883 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Porath, D., Cuniberti, G. & Di Felice, R. Charge transport in DNA-based devices. Top. Curr. Chem. 237, 183–227 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Porath, D., Lapidot, N. & Gomez-Herrero, J. in Introducing Molecular Electronics (eds Cuniberti, G., Fagas, G. & Richter, K.) 411–444 (Springer, 2005).

    Google Scholar 

  15. 15

    Astakhova, T. Y., Likhachev, V. N. & Vinogradov, G. A. Long-range charge transfer in biopolymers. Russ. Chem. Rev. 81, 994–1010 (2012).

    Article  Google Scholar 

  16. 16

    Muren, N. B., Olmon, E. D. & Barton, J. K. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport. Phys. Chem. Chem. Phys. 14, 13754–13771 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Endres, R. G., Cox, D. L. & Singh, R. R. P. Colloquium: the quest for high-conductance DNA. Rev. Mod. Phys. 76, 195–214 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Fink, H. W. & Schonenberger, C. Electrical conduction through DNA molecules. Nature 398, 407–410 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Porath, D., Bezryadin, A., de Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Xu, B. Q., Zhang, P. M., Li, X. L. & Tao, N. J. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 4, 1105–1108 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Cohen, H., Nogues, C., Naaman, R. & Porath, D. Direct measurement of electrical transport through single DNA molecules of complex sequence. Proc. Natl Acad. Sci. USA 102, 11589–11593 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Guo, X. F., Gorodetsky, A. A., Hone, J., Barton, J. K. & Nuckolls, C. Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotech. 3, 163–167 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Watanabe, H., Manabe, C., Shigematsu, T., Shimotani, K. & Shimizu, M. Single molecule DNA device measured with triple-probe atomic force microscope. Appl. Phys. Lett. 79, 2462–2464 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Rakitin, A. et al. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett. 86, 3670–3673 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Cai, L. T., Tabata, H. & Kawai, T. Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77, 3105–3106 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Borovok, N. et al. Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidinbiotin recognition. Nucleic Acids Res. 36, 5050–5060 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Livshits, G. I., Ghabboun, J., Borovok, N., Kotlyar, A. & Porath, D. Comparative EFM of mono- and tetra-molecular G4-DNA. Adv. Mater. 26, 4981–4985 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Liu, S. P. et al. Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. Angew. Chem. Int. Ed. 49, 3313–3316 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Cohen, H. et al. Polarizability of G4-DNA observed by electrostatic force microscopy measurements. Nano Lett. 7, 981–986 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Kotlyar, A. B. et al. Long, monomolecular guanine-based nanowires. Adv. Mater. 17, 1901–1904 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Calzolari, A., Di Felice, R., Molinari, E. & Garbesi, A. G-quartet biomolecular nanowires. Appl. Phys. Lett. 80, 3331–3333 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Woiczikowski, P. B., Kubar, T., Gutierrez, R., Cuniberti, G. & Elstner, M. Structural stability versus conformational sampling in biomolecular systems: why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA? J. Chem. Phys. 133, 035103 (2010).

    Article  Google Scholar 

  33. 33

    Kasumov, A. Y., Klinov, D. V., Roche, P. E., Gueron, S. & Bouchiat, H. Thickness and low-temperature conductivity of DNA molecules. Appl. Phys. Lett. 84, 1007–1009 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Bockrath, M. et al. Scanned conductance microscopy of carbon nanotubes and lambda-DNA. Nano Lett. 2, 187–190 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Gomez-Navarro, C. et al. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior. Proc. Natl Acad. Sci. USA 99, 8484–8487 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Vazquez-Mena, O. et al. Analysis of the blurring in stencil lithography. Nanotechnology 20, 415303 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    CAS  Article  Google Scholar 

  38. 38

    De Pablo, P. J. et al. Mechanical and electrical properties of nanosized contacts on single-walled carbon nanotubes. Adv. Mater. 12, 573–576 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Polizzi, N. F., Skourtis, S. S. & Beratan, D. N. Physical constraints on charge transport through bacterial nanowires. Faraday Discuss. 155, 43–62 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Lehmann, J., Ingold, G. L. & Hanggi, P. Incoherent charge transport through molecular wires: interplay of Coulomb interaction and wire population. Chem. Phys. 281, 199–209 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Chidsey, C. E. D. Free-energy and temperature-dependence of electron-transfer at the metal–electrolyte interface. Science 251, 919–922 (1991).

    CAS  Article  Google Scholar 

  42. 42

    Shapir, E. et al. High-resolution STM imaging of novel single G4-DNA molecules. J. Phys. Chem. B 112, 9267–9269 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Roger-Eitan, I. et al. High-resolution scanning tunneling microscopy imaging of biotin-avidin–G4-DNA molecules. J. Phys. Chem. C 117, 22462–22465 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Migliore, A. Full-electron calculation of effective electronic couplings and excitation energies of charge transfer states: application to hole transfer in DNA pi-stacks. J. Chem. Phys. 131, 114113 (2009).

    Article  Google Scholar 

  45. 45

    Nitzan, A. Chemical Dynamics in Condensed Phases (Oxford Univ. Press, 2006).

    Google Scholar 

  46. 46

    Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    CAS  Article  Google Scholar 

  47. 47

    Couderc, S., Blech, V. & Kim, B. New surface treatment and microscale/nanoscale surface patterning using electrostatically clamped stencil mask. Jpn J. Appl. Phys. 48, 095007 (2009).

    Article  Google Scholar 

  48. 48

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  Article  Google Scholar 

  49. 49

    Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    CAS  Article  Google Scholar 

  50. 50

    Cavallari, M., Calzolari, A., Garbesi, A. & Di Felice, R. Stability and migration of metal ions in G4-wires by molecular dynamics simulations. J. Phys. Chem. B 110, 26337–26348 (2006).

    CAS  Article  Google Scholar 

Download references


The authors thank E. Mastov, T. Dagan, J. Ghabboun, J. Gomez-Herrero, I. Lapides, D. Evplov, D. Park, V. Gutkin, I. Brodsky, E. Molinari, A. Garbesi, R. Rohs, D. N. Beratan, A. Nitzan and T. Milledge for technical support and discussions. Ab initio computations were performed using the Duke Shared Cluster Resource. This work was supported by the European Commission through grants ‘DNA-based nanowires’ (IST–2001-38951), ‘DNA-based nanodevices’ (FP6-029192) and FP7-ERC 226628, by the European Science Foundation COST MP0802, the Israel Science Foundation (1145/10 and 1589/14), Binational Science Foundation (BSF) grant 2006422, the Minerva Center for Bio-Hybrid complex systems, the Institute for Advanced Studies of the Hebrew University of Jerusalem, the Italian Institute of Technology project MOPROSURF, Fondazione Cassa di Risparmio di Modena, the Office of Naval Research (award no. N00014-09-1-1117) and the National Science Foundation (grant CHE-1057953). D.P. thanks the Etta and Paul Schankerman Chair of Molecular Biomedicine.

Author information




D.P. and G.I.L. conceived and designed the reported research. G.I.L. prepared the samples and performed the cAFM experiments, assisted by A.S., D.R. and L.G. A.B.K., N.B. and G.E. designed and synthesized the G4-DNA molecules. S.J.W. and E.P. provided ssDNA-wrapped SWCNTs. J.C.C. and S.S.S. formulated the hopping model for the reported data, proposed by D.P. J.C.C. and G.I.L. fitted the data. J.C.C., S.S.S., A.M., R.D.F., G.I.L. and D.P. analysed the data. A.M. and R.D.F. conducted molecular dynamics simulations and DFT calculations for the G4-DNA structural and electrical properties. All authors discussed the results. G.I.L., J.C.C., R.D.F., S.S.S. and D.P. wrote the manuscript, assisted by all authors.

Corresponding authors

Correspondence to Alexander B. Kotlyar or Danny Porath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2187 kb)

Supplementary information

Supplementary Information (XLS 238 kb)

Supplementary information

Supplementary Information (XLS 654 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Livshits, G., Stern, A., Rotem, D. et al. Long-range charge transport in single G-quadruplex DNA molecules. Nature Nanotech 9, 1040–1046 (2014). https://doi.org/10.1038/nnano.2014.246

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research