Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Graphene spintronics

Abstract

The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material and of graphene-based spintronic devices. Here, we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin–orbit coupling and spin relaxation in graphene. Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including topological states and proximity-induced phenomena in graphene and other two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin injection and transport in graphene spin valves.
Figure 2: Magnetic moment in graphene due to light adatoms and vacancy defects.
Figure 3: Band structure topologies of graphene with spin–orbit coupling in a transverse electric field.
Figure 4: Experimental studies of spin relaxation in graphene.
Figure 5: Spin relaxation mechanisms in graphene.
Figure 6: Spin logic application of graphene spin valves.

Similar content being viewed by others

References

  1. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  2. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  CAS  Google Scholar 

  3. Dery, H. et al. Nanospintronics based on magnetologic gates. IEEE Trans. Electron Dev. 59, 259–262 (2012).

    Article  CAS  Google Scholar 

  4. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  5. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007). This is the first paper to demonstrate spin transport and precession in graphene at room temperature.

    Article  CAS  Google Scholar 

  6. Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010). This is the first paper to demonstrate tunnelling spin injection into graphene, which led to efficient spin injection and enhanced spin lifetimes.

    Article  CAS  Google Scholar 

  7. Zomer, P. J., Guimarães, M. H. D., Tombros, N. & van Wees, B. J. Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys. Rev. B 86, 161416 (2012).

    Article  CAS  Google Scholar 

  8. Yang, T.-Y. et al. Observation of long spin relaxation times in bilayer graphene at room temperature. Phys. Rev. Lett. 107, 047206 (2011). This paper and the next are the first ones to report longer spin lifetimes and a different spin-relaxation mechanism in bilayer graphene.

    Article  CAS  Google Scholar 

  9. Han, W. & Kawakami, R. K. Spin relaxation in single layer and bilayer graphene. Phys. Rev. Lett. 107, 047207 (2011).

    Article  CAS  Google Scholar 

  10. Dlubak, B. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nature Phys. 8, 557–561 (2012). This paper presents efficient spin injection into epitaxial graphene on SiC.

    Article  CAS  Google Scholar 

  11. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  12. Sarma, S. D., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  CAS  Google Scholar 

  13. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  14. Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  15. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    Article  CAS  Google Scholar 

  16. Fert, A. & Lee, S.-F. Theory of the bipolar spin switch. Phys. Rev. B 53, 6554–6565 (1996).

    Article  CAS  Google Scholar 

  17. Muduli, P. K. et al. Large local Hall effect in pin-hole dominated multigraphene spin-valves. Nanotechnology 24, 015703 (2013).

    Article  CAS  Google Scholar 

  18. Cho, S., Chen, Y.-F. & Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007).

    Article  CAS  Google Scholar 

  19. Nishioka, M. & Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 90, 252505 (2007).

    Article  CAS  Google Scholar 

  20. Ohishi, M. et al. Spin injection into a graphene thin film at room temperature. Jpn. J. Appl. Phys. 46, L605–L607 (2007).

    Article  CAS  Google Scholar 

  21. Jozsa, C., Popinciuc, M., Tombros, N., Jonkman, H. T. & van Wees, B. J. Electronic spin drift in graphene field effect transistors. Phys. Rev. Lett. 100, 236603 (2008).

    Article  CAS  Google Scholar 

  22. Han, W. et al. Electron–hole asymmetry of spin injection and transport in single-layer graphene. Phys. Rev. Lett. 102, 137205 (2009).

    Article  CAS  Google Scholar 

  23. Han, W. et al. Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl. Phys. Lett. 94, 222109 (2009).

    Article  CAS  Google Scholar 

  24. Popinciuc, M. et al. Electronic spin transport in graphene field effect transistors. Phys. Rev. B 80, 214427 (2009).

    Article  CAS  Google Scholar 

  25. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, 4790(R) (2000).

    Article  Google Scholar 

  26. Rashba, E. I. Theory of electrical spin injecton: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, 16267(R) (2000).

    Article  Google Scholar 

  27. Fert, A. & Jaffres, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Article  CAS  Google Scholar 

  28. Zhang, C., Wang, Y., Wu, B. & Wu, Y. Enhancement of spin injection from ferromagnet to graphene with a Cu interfacial layer. Appl. Phys. Lett. 101, 022406 (2012).

    Article  CAS  Google Scholar 

  29. Yamaguchi, T., Masubuchi, S., Iguchi, K., Moriya, R. & Machida, T. Tunnel spin injection into graphene using Al2O3 barrier grown by atomic layer deposition on functionalized graphene surface. J. Magn. Magn. Mater. 324, 849–852 (2012).

    Article  CAS  Google Scholar 

  30. Jo, S., Ki, D.-K., Jeong, D., Lee, H-J. & Kettemann, S. Spin relaxation properties in graphene due to its linear dispersion. Phys. Rev. B 84, 075453 (2011).

    Article  CAS  Google Scholar 

  31. Avsar, A. et al. Towards wafer scale fabrication of graphene based spin valve devices. Nano Lett. 11, 2363–2358 (2011).

    Article  CAS  Google Scholar 

  32. Pi, K. et al. Manipulation of spin transport in graphene by surface chemical doping. Phys. Rev. Lett. 104, 187201 (2010).

    Article  CAS  Google Scholar 

  33. Liu, Y. P. et al. Spin injection properties in trilayer graphene lateral spin valves. Appl. Phys. Lett. 102, 033105 (2013).

    Article  CAS  Google Scholar 

  34. Neumann, I. et al. Electrical detection of spin precession in freely suspended graphene spin valves on cross-linked poly(methyl methacrylate). Small 9, 156–160 (2013).

    Article  CAS  Google Scholar 

  35. Friedman, A. L., van't Erve, O. M. J., Li, C. H., Robinson, J. T. & Jonker, B. T. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nature Commun. 5, 3161 (2014).

    Article  CAS  Google Scholar 

  36. Volmer, F. et al. Role of MgO barriers for spin and charge transport in Co/MgO/graphene nonlocal spin-valve devices. Phys. Rev. B 88, 161405 (2013).

    Article  CAS  Google Scholar 

  37. Yamaguchi, T. et al. Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Express 6, 073001 (2013).

    Article  CAS  Google Scholar 

  38. Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F. & Blake, P. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Article  Google Scholar 

  39. Wang, W. H. et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77, 020402(R) (2008).

    Article  CAS  Google Scholar 

  40. Guimarães, M. H. D. et al. Spin transport in high-quality suspended graphene devices. Nano Lett. 12, 3512–3517 (2012).

    Article  CAS  Google Scholar 

  41. Drögeler, M. et al. Nanosecond spin lifetimes in single- and few-layer graphene–hBN heterostructures at room temperature. Preprint at http://arXiv.org/abs/1406.2439v1 (2014).

  42. Guimarães, M. H. D. et al. Transverse electric field control of spin relaxation in hBN encapsulated graphene. Phys. Rev. Lett. 113, 086602 (2014).

    Article  Google Scholar 

  43. Patra, A. K. et al. Dynamic spin injection into chemical vapor deposited graphene. Appl. Phys. Lett. 101, 162407 (2012).

    Article  CAS  Google Scholar 

  44. Tang, Z. et al. Dynamically generated pure spin current in single-layer graphene. Phys. Rev. B 87, 140401 (2013).

    Article  CAS  Google Scholar 

  45. Birkner, B. et al. Annealing-induced magnetic moments detected by spin precession measurements in epitaxial graphene on SiC. Phys. Rev. B 87, 081405 (2013).

    Article  CAS  Google Scholar 

  46. Vera-Marun, I. J., Ranjan, V. & van Wees, B. J. Nonlinear detection of spin currents in graphene with non-magnetic electrodes. Nature Phys. 8, 313–316 (2012).

    Article  CAS  Google Scholar 

  47. Yazyev, O. V. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007). This paper predicts magnetic moments induced by point defects including vacancy and hydrogen adatoms.

    Article  CAS  Google Scholar 

  48. Nair, R. R. et al. Spin-half paramagnetism in graphene induced by point defects. Nature Phys. 8, 199–202 (2012). This paper identifies the spin-1/2 paramagnetism in graphene induced by fluorine and vacancy point defects based on SQUID magnetometry.

    Article  CAS  Google Scholar 

  49. Cervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840–844 (2009).

    Article  CAS  Google Scholar 

  50. McCreary, K. M., Swartz, A. G., Han, W., Fabian, J. & Kawakami, R. K. Magnetic moment formation in graphene detected by scattering of pure spin currents. Phys. Rev. Lett. 109, 186604 (2012). This paper presents the formation of localized magnetic moments and paramagnetism induced by hydrogen and vacancy point defects based on spin transport.

    Article  CAS  Google Scholar 

  51. Giesbers, A. J. M. et al. Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene. Phys. Rev. Lett. 111, 166101 (2013).

    Article  CAS  Google Scholar 

  52. Boukhvalov, D. W., Katsnelson, M. I. & Lichtenstein, A. I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008).

    Article  CAS  Google Scholar 

  53. Hong, X., Zou, K., Wang, B., Cheng, S. H. & Zhu, J. Evidence for spin-flip scattering and local moments in dilute fluorinated graphene. Phys. Rev. Lett. 108, 226602 (2012).

    Article  CAS  Google Scholar 

  54. Santos, E. J. G., Sánchez-Portal, D. & Ayuela, A. Magnetism of substitutional Co impurities in graphene: Realization of single π vacancies. Phys. Rev. B 81, 125433 (2010).

    Article  CAS  Google Scholar 

  55. Zhang, H., Lazo, C., Blügel, S., Heinze, S. & Mokrousov, Y. Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms. Phys. Rev. Lett. 108, 056802 (2012).

    Article  CAS  Google Scholar 

  56. Hong, J. et al. Room-temperature magnetic ordering in functionalized graphene. Sci. Rep. 2, 624 (2012).

    Article  CAS  Google Scholar 

  57. Nair, R. R. et al. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nature Commun. 4, 2010 (2013).

    Article  CAS  Google Scholar 

  58. Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  59. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    Article  CAS  Google Scholar 

  60. Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  61. Sofo, J. O. et al. Magnetic structure of hydrogen-induced defects on graphene. Phys. Rev. B 85, 115405 (2012).

    Article  CAS  Google Scholar 

  62. Rudenko, A. N., Keil, F. J., Katsnelson, M. I. & Lichtenstein, A. I. Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene. Phys. Rev. B 88, 081405 (2013).

    Article  CAS  Google Scholar 

  63. Kelly, K. F., Mickelson, E. T., Hauge, R. H., Margrave, J. L. & Halas, N. J. Nanoscale imaging of chemical interactions: Fluorine on graphite. Proc. Natl Acad. Sci. USA 97, 10318–10321 (2000).

    Article  CAS  Google Scholar 

  64. Robinson, J. T. et al. Properties of fluorinated graphene films. Nano Lett. 10, 3001–3005 (2010).

    Article  CAS  Google Scholar 

  65. Wei, W. & Jacob, T. Electronic and optical properties of fluorinated graphene: A many-body perturbation theory study. Phys. Rev. B 87, 115431 (2013).

    Article  CAS  Google Scholar 

  66. Nair, R. R. et al. Fluorographene: A two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010).

    Article  CAS  Google Scholar 

  67. Liu, H. Y., Hou, Z. F., Hu, C. H., Yang, Y. & Zhu, Z. Z. Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. J. Phys. Chem. C 116, 18193–18201 (2012).

    Article  CAS  Google Scholar 

  68. Kim, H.-J. & Cho, J.-H. Fluorine-induced local magnetic moment in graphene: A hybrid DFT study. Phys. Rev. B 87, 174435 (2013).

    Article  CAS  Google Scholar 

  69. Mori-Sánchez, P., Cohen, A. J. & Yang, W. Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100, 146401 (2008).

    Article  CAS  Google Scholar 

  70. Casolo, S., Flage-Larsen, E., Løvvik, O. M., Darling, G. R. & Tantardini, G. F. Role of the self-interaction error in studying chemisorption on graphene from first-principles. Phys. Rev. B 81, 205412 (2010).

    Article  CAS  Google Scholar 

  71. Nanda, B. R. K., Sherafati, M., Popović, Z. S. & Satpathy, S. Electronic structure of the substitutional vacancy in graphene: density-functional and Green's function studies. New J. Phys. 14, 083004 (2012).

    Article  CAS  Google Scholar 

  72. Ugeda, M. M., Brihuega, I., Guinea, F. & Gómez-Rodríguez, J. M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010).

    Article  CAS  Google Scholar 

  73. Palacios, J. J. & Ynduráin, F. Critical analysis of vacancy-induced magnetism in monolayer and bilayer graphene. Phys. Rev. B 85, 245443 (2012).

    Article  CAS  Google Scholar 

  74. Swartz, A. G., McCreary, K. M., Han, W., Wen, H. & Kawakami, R. K. A systematic approach to interpreting Hanle spin precession data in non-local spin valves. Proc. SPIE 8813, 881328 (2013).

    Article  CAS  Google Scholar 

  75. Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Zutic, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).

    CAS  Google Scholar 

  76. Balakrishnan, J., Kok Wai Koon, G., Jaiswal, M., Castro Neto, A. H. & Ozyilmaz, B. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Phys. 9, 284–287 (2013).

    Article  CAS  Google Scholar 

  77. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005). This paper started the field of topological insulators.

    Article  CAS  Google Scholar 

  78. Tse, W.-K., Qiao, Z., Yao, Y., MacDonald, A. H. & Niu, Q. Quantum anomalous Hall effect in single-layer and bilayer graphene. Phys. Rev. B 83, 155447 (2011).

    Article  CAS  Google Scholar 

  79. Liu, M.-H., Bundesmann, J. & Richter, K. Spin-dependent Klein tunneling in graphene: Role of Rashba spin–orbit coupling. Phys. Rev. B 85, 085406 (2012).

    Article  CAS  Google Scholar 

  80. McCann, E. & Fal'ko, V. I. z→-z symmetry of spin–orbit coupling and weak localization in graphene. Phys. Rev. Lett. 108, 166606 (2012).

    Article  CAS  Google Scholar 

  81. Scholz, A., López, A. & Schliemann, J. Interplay between spin–orbit interactions and a time-dependent electromagnetic field in monolayer graphene. Phys. Rev. B 88, 045118 (2013).

    Article  CAS  Google Scholar 

  82. Kramida, A., Ralchenko, Y., Reader, J. & Team, N. A. NIST Atomic Spectra Database (version 5.1) http://physics.nist.gov/asd (National Institute of Standards and Technology, 2013).

    Google Scholar 

  83. Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1224–1238 (1960).

    Google Scholar 

  84. Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-structure topologies of graphene: Spin–orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009). This paper establishes ab initio values for intrinsic and Rashba spin–orbit coupling in graphene.

    Article  CAS  Google Scholar 

  85. Abdelouahed, S., Ernst, A., Henk, J., Maznichenko, I. V. & Mertig, I. Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles. Phys. Rev. B 82, 125424 (2010).

    Article  CAS  Google Scholar 

  86. Boettger, J. C. & Trickey, S. B. First-principles calculation of the spin–orbit splitting in graphene. Phys. Rev. B 75, 121402 (2007).

    Article  CAS  Google Scholar 

  87. McClure, J. W. & Yafet, Y. Theory of the g-factor of the current carriers in graphite single crystals. Proc. 5th Conf. Carbon 1, 22 (Pergamon, 1962).

    Google Scholar 

  88. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

    Article  CAS  Google Scholar 

  89. Jhang, S. H. et al. Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields. Phys. Rev. B 82, 041404 (2010).

    Article  CAS  Google Scholar 

  90. Ochoa, H., Castro Neto, A. H., Fal'ko, V. I. & Guinea, F. Spin–orbit coupling assisted by flexural phonons in graphene. Phys. Rev. B 86, 245411 (2012).

    Article  CAS  Google Scholar 

  91. Song, Y. & Dery, H. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).

    Article  CAS  Google Scholar 

  92. Mayorov, A. S. et al. How close can one approach the Dirac point in graphene experimentally? Nano Lett. 12, 4629–4634 (2012).

    Article  CAS  Google Scholar 

  93. Liu, C.-C., Feng, W. & Yao, Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011).

    Article  CAS  Google Scholar 

  94. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    Article  CAS  Google Scholar 

  95. Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013).

    Article  CAS  Google Scholar 

  96. Shi, H., Pan, H., Zhang, Y.-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev. B 87, 155304 (2013).

    Article  CAS  Google Scholar 

  97. Min, H. et al. Intrinsic and Rashba spin–orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

    Article  CAS  Google Scholar 

  98. Konschuh, S., Gmitra, M. & Fabian, J. Tight-binding theory of the spin–orbit coupling in graphene. Phys. Rev. B 82, 245412 (2010).

    Article  CAS  Google Scholar 

  99. Konschuh, S., Gmitra, M., Kochan, D. & Fabian, J. Theory of spin–orbit coupling in bilayer graphene. Phys. Rev. B 85, 115423 (2012).

    Article  CAS  Google Scholar 

  100. Konschuh, S. Spin–Orbit Coupling Effects: From Graphene to Graphite PhD thesis, Univ. Regensburg (2011).

    Google Scholar 

  101. Kormányos, A. & Burkard, G. Intrinsic and substrate induced spin–orbit interaction in chirally stacked trilayer graphene. Phys. Rev. B 87, 045419 (2013).

    Article  CAS  Google Scholar 

  102. Castro Neto, A. H. & Guinea, F. Impurity-induced spin–orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009). This paper proposes to use adatoms to increase and manipulate spin–orbit coupling in graphene.

    Article  CAS  Google Scholar 

  103. Weeks, C., Hu, J., Alicea, J., Franz, M. & Wu, R. Engineering a robust quantum spin Hall state in graphene via adatom deposition. Phys. Rev. X 1, 021001 (2011).

    Google Scholar 

  104. Gmitra, M., Kochan, D. & Fabian, J. Spin–orbit coupling in hydrogenated graphene. Phys. Rev. Lett. 110, 246602 (2013).

    Article  CAS  Google Scholar 

  105. Józsa, C. et al. Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403(R) (2009).

    Article  CAS  Google Scholar 

  106. Han, W. et al. Spin transport and relaxation in graphene. J. Magn. Magn. Mater. 324, 369–381 (2012).

    Article  CAS  Google Scholar 

  107. Han, W. et al. Spin relaxation in single-layer graphene with tunable mobility. Nano Lett. 12, 3443–3447 (2012).

    Article  CAS  Google Scholar 

  108. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  CAS  Google Scholar 

  109. Zaffalon, M. & van Wees, B. J. Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island. Phys. Rev. B 71, 125401 (2005).

    Article  CAS  Google Scholar 

  110. Sosenko, E., Wei, H. & Aji, V. Effect of contacts on spin lifetime measurements in graphene. Phys. Rev. B 89, 245436 (2014).

    Article  CAS  Google Scholar 

  111. Maassen, T. et al. Localized states influence spin transport in epitaxial graphene. Phys. Rev. Lett. 110, 067209 (2013).

    Article  CAS  Google Scholar 

  112. Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin–orbit-mediated spin relaxation in graphene. Phys. Rev. Lett. 103, 146801 (2009).

    Article  CAS  Google Scholar 

  113. Dóra, B., Murányi, F. & Simon, F. Electron spin dynamics and electron spin resonance in graphene. Europhys. Lett. 92, 17002 (2010).

    Article  CAS  Google Scholar 

  114. Ertler, C., Konschuh, S., Gmitra, M. & Fabian, J. Electron spin relaxation in graphene: The role of the substrate. Phys. Rev. B 80, 041405(R) (2009).

    Article  CAS  Google Scholar 

  115. Fratini, S., Gosálbez-Martínez, D., Merodio Cámara, P. & Fernández-Rossier, J. Anisotropic intrinsic spin relaxation in graphene due to flexural distortions. Phys. Rev. B 88, 115426 (2013).

    Article  CAS  Google Scholar 

  116. Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    Article  CAS  Google Scholar 

  117. Yafet, Y. in Solid State Physics Vol. 14 (eds Seitz F. & Turnbull, D.) 1–98 (Academic, 1963).

    Google Scholar 

  118. Dyakonov, M. I. & Perel, V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1972).

    Google Scholar 

  119. Wu, M. W., Jiang, J. H. & Weng, M. Q. Spin dynamics in semiconductors. Phys. Rep. 493, 61–236 (2010).

    Article  CAS  Google Scholar 

  120. Tuan, D. V., Ortmann, F., Soriano, D., Valenzuela, S. O. & Roche, S. Pseudospin-driven spin relaxation mechanism in graphene. Nature Phys. http://dx.doi.org/10.1038/nphys3083 (2014).

  121. Maassen, T., Dejene, F. K., Guimaraes, M. H., Jozsa, C. & van Wees, B. J. Comparison between charge and spin transport in few layer graphene. Phys. Rev. B 83, 115410 (2011).

    Article  CAS  Google Scholar 

  122. Dugaev, V. K., Sherman, E. Y. & Barnaś, J. Spin dephasing and pumping in graphene due to random spin-orbit interaction. Phys. Rev. B 83, 085306 (2011).

    Article  CAS  Google Scholar 

  123. Zhang, P. & Wu, M. W. Electron spin relaxation in graphene with random Rashba field: comparison of the D'yakonov–Perel' and Elliott-Yafet-like mechanisms. New J. Phys. 14, 033015 (2012).

    Article  CAS  Google Scholar 

  124. Wojtaszek, M., Vera-Marun, I. J., Whiteway, E., Hilke, M. & van Wees, B. J. Absence of hyperfine effects in 13C-graphene spin-valve devices. Phys. Rev. B 89, 035417 (2014).

    Article  CAS  Google Scholar 

  125. Lundeberg, M. B., Yang, R., Renard, J. & Folk, J. A. Defect-mediated spin relaxation and dephasing in graphene. Phys. Rev. Lett. 110, 156601 (2013).

    Article  CAS  Google Scholar 

  126. Kochan, D., Gmitra, M. & Fabian, J. Spin relaxation mechanism in graphene: resonant scattering by magnetic impurities. Phys. Rev. Lett. 112, 116602 (2014).

    Article  CAS  Google Scholar 

  127. Wojtaszek, M., Vera-Marun, I. J., Maassen, T. & van Wees, B. J. Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices. Phys. Rev. B 87, 081402 (2013).

    Article  CAS  Google Scholar 

  128. Kimura, T., Sato, T. & Otani, Y. Temperature evolution of spin relaxation in a NiFe/Cu lateral spin valve. Phys. Rev. Lett. 100, 066602 (2008).

    Article  CAS  Google Scholar 

  129. Suzuki, T. et al. Room-temperature electron spin transport in a highly doped Si channel. Appl. Phys. Express 4, 023003 (2011).

    Article  CAS  Google Scholar 

  130. Zhou, Y. et al. Electrical spin injection and transport in germanium. Phys. Rev. B 84, 125323 (2011).

    Article  CAS  Google Scholar 

  131. Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nature Phys. 4, 851–854 (2008).

    Article  CAS  Google Scholar 

  132. Idzuchi, H., Fukuma, Y., Wang, L. & Otani, Y. Spin relaxation mechanism in silver nanowires covered with MgO protection layer. Appl. Phys. Lett. 101, 022415 (2012).

    Article  CAS  Google Scholar 

  133. Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nanotech. 5, 266–270 (2010).

    Article  CAS  Google Scholar 

  134. Lin, C.-C. et al. Spin transfer torque in a graphene lateral spin valve assisted by an external magnetic field. Nano Lett. 13, 5177–5181 (2013).

    Article  CAS  Google Scholar 

  135. Wen, H., Zhu, T., Luo, Y., Amamou, W. & Kawakami, R. K. Current-based detection of nonlocal spin transport in graphene for spin-based logic applications. J. Appl. Phys. 115, 17B741 (2014).

    Article  CAS  Google Scholar 

  136. Jaffres, H., George, J.-M. & Fert, A. Spin transport in multiterminal devices: Large spin signals in devices with confined geometry. Phys. Rev. B 82, 140408 (2010).

    Article  CAS  Google Scholar 

  137. Qiao, Z. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    Article  CAS  Google Scholar 

  138. Jiang, H., Qiao, Z., Liu, H., Shi, J. & Niu, Q. Stabilizing topological phases in graphene via random adsorption. Phys. Rev. Lett. 109, 116803 (2012).

    Article  CAS  Google Scholar 

  139. Haugen, H., Huertas-Hernando, D. & Brataas, A. Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008).

    Article  CAS  Google Scholar 

  140. Michetti, P., Recher, P. & Iannaccone, G. Electric field control of spin rotation in bilayer graphene. Nano Lett. 10, 4463–4469 (2010).

    Article  CAS  Google Scholar 

  141. Yang, H. X. et al. Proximity effects induced in graphene by magnetic insulators: First-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 110, 046603 (2013).

    Article  CAS  Google Scholar 

  142. Swartz, A. G., Odenthal, P. M., Hao, Y., Ruoff, R. S. & Kawakami, R. K. Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6, 10063–10069 (2012).

    Article  CAS  Google Scholar 

  143. Song, C.-L. et al. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl. Phys. Lett. 97, 143118 (2010).

    Article  CAS  Google Scholar 

  144. Roy, K. et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826–830 (2013).

    Article  CAS  Google Scholar 

  145. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  CAS  Google Scholar 

  146. Bianco, E. et al. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 7, 4414–4421 (2013).

    Article  CAS  Google Scholar 

  147. Pinchuk, I. V. et al. Epitaxial co-deposition growth of CaGe2 films by molecular beam epitaxy for large area germanane. J. Mater. Res. 29, 410–416 (2014).

    Article  CAS  Google Scholar 

  148. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  149. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  150. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  CAS  Google Scholar 

  151. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  CAS  Google Scholar 

  152. Blase, X., Rubio, A., Louie, S. G. & Cohen, M. L. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 51, 6868–6875 (1995).

    Article  CAS  Google Scholar 

  153. FLEUR: The Jülich FLAPW code family; http://www.flapw.de

  154. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

  155. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  156. Huang, B. & Appelbaum, I. Spin dephasing in drift-dominated semiconductor spintronics devices. Phys. Rev. B 77, 165331 (2008).

    Article  CAS  Google Scholar 

  157. Li, P., Li, J., Qing, L., Dery, H. & Appelbaum, I. Anisotropy-driven spin relaxation in germanium. Phys. Rev. Lett. 111, 257204 (2013).

    Article  CAS  Google Scholar 

  158. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.H. and R.K. acknowledge the support of ONR (N00014-14-1-0350), NSF (DMR-1310661), NSF-MRSEC (DMR-1420451), NRI-NSF (NEB-1124601) and ARO (W911NF-11-1-0182). R.K. also acknowledges the support from C-SPIN, one of six centres of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. J.F. and M.G. acknowledge support by the DFG SFB 689, SPP 1285 and GRK 1570. J.F. also acknowledges support from EC under Graphene Flagship (contract no. CNECT-ICT-604391).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland K. Kawakami or Jaroslav Fabian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Kawakami, R., Gmitra, M. et al. Graphene spintronics. Nature Nanotech 9, 794–807 (2014). https://doi.org/10.1038/nnano.2014.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing