Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells

Abstract

Solution-processed inorganic and organic materials have been pursued for more than a decade as low-threshold, high-gain lasing media, motivated in large part by their tunable optoelectronic properties and ease of synthesis and processing1. Although both have demonstrated stimulated emission and lasing, they have not yet approached the continuous-wave pumping regime1,2,3,4,5,6,7,8. Two-dimensional CdSe colloidal nanosheets combine the advantage of solution synthesis with the optoelectronic properties of epitaxial two-dimensional quantum wells. Here, we show that these colloidal quantum wells possess large exciton and biexciton binding energies of 132 meV and 30 meV, respectively, giving rise to stimulated emission from biexcitons at room temperature. Under femtosecond pulsed excitation, close-packed thin films yield an ultralow stimulated emission threshold of 6 μJ cm–2, sufficient to achieve continuous-wave pumped stimulated emission, and lasing when these layers are embedded in surface-emitting microcavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and optical CQwell properties.
Figure 2: Power-dependent and time-resolved photoluminescence data.
Figure 3: Stimulated emission under femtosecond and c.w. pumped conditions.
Figure 4: Continuous-wave lasing in a CQwell-based microcavity at room temperature.

Similar content being viewed by others

References

  1. Klimov, V. I. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  2. Moreels, I. et al. Nearly temperature-independent threshold for amplified spontaneous emission in colloidal CdSe/CdS quantum dot-in-rods. Adv. Mater. 24, OP231–OP235 (2012).

    Article  CAS  Google Scholar 

  3. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nature Nanotech. 7, 335–339 (2012).

    Article  CAS  Google Scholar 

  4. Grivas, C. et al. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals. Nature Commun. 4, 2376 (2013).

    Article  Google Scholar 

  5. She, C. et al. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 14, 2772–2777 (2014).

    Article  CAS  Google Scholar 

  6. Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S. & Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 8, 6599–6605 (2014).

    Article  CAS  Google Scholar 

  7. Grivas, C. & Pollnau, M. Organic solid-state integrated amplifiers and lasers. Laser Photon. Rev. 6, 419–462 (2012).

    Article  Google Scholar 

  8. Clark, J. & Lanzani, G. Organic photonics for communications. Nature Photon. 4, 438–446 (2010).

    Article  CAS  Google Scholar 

  9. Alferov, Z. I. et al. Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond. 4, 1573–1575 (1971).

    Google Scholar 

  10. Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002).

    Article  CAS  Google Scholar 

  11. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  CAS  Google Scholar 

  12. Someya, T. Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science 285, 1905–1906 (1999).

    Article  CAS  Google Scholar 

  13. Tamboli, A. C. et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nature Photon. 1, 61–64 (2007).

    Article  CAS  Google Scholar 

  14. Klimov, V. I. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  15. García-Santamaría, F. et al. Suppressed auger recombination in 'giant' nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  16. Climente, J. I., Movilla, J. L. & Planelles, J. Auger recombination suppression in nanocrystals with asymmetric electron–hole confinement. Small 8, 754–759 (2012).

    Article  CAS  Google Scholar 

  17. Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  CAS  Google Scholar 

  18. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    Article  CAS  Google Scholar 

  19. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  Google Scholar 

  20. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  21. Achtstein, A. W. et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 12, 3151–3157 (2012).

    Article  CAS  Google Scholar 

  22. Sun, H. D. et al. Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. J. Appl. Phys. 91, 1993 (2002).

    Article  CAS  Google Scholar 

  23. Voigt, J., Spiegelberg, F. & Senoner, M. Band parameters of CdS and CdSe single crystals determined from optical exciton spectra. Phys. Status Solidi 91, 189–199 (1979).

    Article  CAS  Google Scholar 

  24. Birkedal, D., Singh, J., Lyssenko, V., Erland, J. & Hvam, J. Binding of quasi-two-dimensional biexcitons. Phys. Rev. Lett. 76, 672–675 (1996).

    Article  CAS  Google Scholar 

  25. Patton, B., Langbein, W. & Woggon, U. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B 68, 125316 (2003).

    Article  Google Scholar 

  26. Woggon, U. et al. Huge binding energy of localized biexcitons in CdS/ZnS quantum structures. Phys. Rev. B 61, 12632–12635 (2000).

    Article  CAS  Google Scholar 

  27. Feldmann, J. et al. Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 59, 2337–2340 (1987).

    Article  CAS  Google Scholar 

  28. Kim, J., Wake, D. & Wolfe, J. Thermodynamics of biexcitons in a GaAs quantum well. Phys. Rev. B 50, 15099–15107 (1994).

    Article  CAS  Google Scholar 

  29. Kunneman, L. T. et al. Bimolecular auger recombination of electron–hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 4, 3574–3578 (2013).

    Article  CAS  Google Scholar 

  30. Homburg, O. et al. Biexcitonic gain characteristics in ZnSe-based lasers with binary wells. Phys. Rev. B 60, 5743–5750 (1999).

    Article  CAS  Google Scholar 

  31. Malko, A. V. et al. From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002).

    Article  CAS  Google Scholar 

  32. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012).

    Article  Google Scholar 

  33. Mahler, B., Nadal, B., Bouet, C., Patriarche, G. & Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134, 18591–18598 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Framework Program (FP7/2007-2013, under grant agreement no. 298022, NIRPLANA) and the CARIPLO Foundation (NANOCRYSLAS). M. Scotto is thanked for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.Q.G., F.D.S. and I.M. conceived the experiments. S.C. synthesized the CdSe CQwells and measured the optical properties of the CQwells in solution. J.Q.G. and I.M. performed the ultrafast optical spectroscopy and lasing experiments. J.Q.G., S.C. and F.D.S. fabricated the microcavity devices, with F.D.S and R.K. performing structural characterization. J.Q.G., R.C., L.M. and I.M. analysed and interpreted the data. J.Q.G. and I.M wrote the manuscript, with contributions from all authors.

Corresponding author

Correspondence to Iwan Moreels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grim, J., Christodoulou, S., Di Stasio, F. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotech 9, 891–895 (2014). https://doi.org/10.1038/nnano.2014.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing