Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene

Abstract

Terahertz radiation has uses in applications ranging from security to medicine1. However, sensitive room-temperature detection of terahertz radiation is notoriously difficult2. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism; photoexcited carriers rapidly thermalize due to strong electron–electron interactions3,4, but lose energy to the lattice more slowly3,5. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating6,7 or dissimilar contact metals8 produces a net current via the thermoelectric effect. Here, we demonstrate a graphene thermoelectric terahertz photodetector with sensitivity exceeding 10 V W–1 (700 V W–1) at room temperature and noise-equivalent power less than 1,100 pW Hz–1/2 (20 pW Hz–1/2), referenced to the incident (absorbed) power. This implies a performance that is competitive with the best room-temperature terahertz detectors9 for an optimally coupled device, and time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those7,10. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene photothermoelectric detector device fabrication and principle of operation.
Figure 2: Broadband thermoelectric responsivity of the graphene photothermoelectric detector.
Figure 3: Noise-equivalent power of the graphene photothermoelectric detector.
Figure 4: Response time of the graphene photothermoelectric detector.
Figure 5: Simulated responsivity of the graphene photothermoelectric detector.

Similar content being viewed by others

References

  1. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  CAS  Google Scholar 

  2. Chan, W. L., Deibel, J. & Mittleman, D. M. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).

    Article  Google Scholar 

  3. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Article  Google Scholar 

  4. Tse, W-K., Hwang, E. H. & Das Sarma, S. Ballistic hot electron transport in graphene. Appl. Phys. Lett. 93, 023128 (2008).

    Article  Google Scholar 

  5. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  Google Scholar 

  6. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  7. Graham, M. W., Shi, S-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurement of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2013).

    Article  CAS  Google Scholar 

  8. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  9. Sizov, F. & Rogalski, A. THz detectors. Prog. Quant. Electron. 34, 278–347 (2010).

    Article  Google Scholar 

  10. Kim, M-H. et al. Photothermal response in dual-gated bilayer graphene. Phys. Rev. Lett. 110, 247402 (2013).

    Article  Google Scholar 

  11. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  12. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  CAS  Google Scholar 

  13. Fong, K. C. & Schwab, K. C. Ultrasensitive and wide-bandwidth thermal measurement of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).

    Google Scholar 

  14. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  CAS  Google Scholar 

  15. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  CAS  Google Scholar 

  16. Pospishil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    Article  Google Scholar 

  17. Mittendorff, M. et al. Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103, 021113 (2013).

    Article  Google Scholar 

  18. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 11, 865–871 (2012).

    Article  CAS  Google Scholar 

  19. Spirito, D. et al. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 104, 061111 (2014).

    Article  Google Scholar 

  20. Muraviev, A. V. et al. Plasmonic and bolometric terahertz detection by graphene field-effect transistor. Appl. Phys. Lett. 103, 181114 (2013).

    Article  Google Scholar 

  21. Bozhkov, V. G. Semiconductor detectors, mixers, and frequency multipliers for the terahertz band. Radiophys. Quantum Electron. 46, 631–656 (2003).

    Article  Google Scholar 

  22. Klappenberger, F. et al. Broadband semiconductor superlattice detector for THz radiation. Appl. Phys. Lett. 78, 1673–1675 (2001).

    Article  CAS  Google Scholar 

  23. Preu, S. et al. Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals. Opt. Express 21, 17941–17950 (2013).

    Article  CAS  Google Scholar 

  24. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Article  Google Scholar 

  25. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  26. Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  Google Scholar 

  27. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    Article  CAS  Google Scholar 

  28. Khomyakov, P. A., Starikov, A. A., Brocks, G. & Kelly, P. J. Nonlinear screening of charges induced in graphene by metal contacts. Phys. Rev. B 82, 115437 (2010).

    Article  Google Scholar 

  29. Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron–hole asymmetry in graphene. Phys. Rev. B 78, 121402(R) (2008).

    Article  Google Scholar 

  30. Niemeyer, J. & Kose, V. Observation of large dc supercurrents at nonzero voltages in Josephson tunnel junctions. Appl. Phys. Lett. 29, 380–382 (1976).

    Article  CAS  Google Scholar 

  31. Bartels, A. et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 78, 035107 (2007).

    Article  CAS  Google Scholar 

  32. Nyakiti, L. O. et al. Enabling graphene-based technologies: toward wafer-scale production of epitaxial graphene. Mater. Res. Soc. Bull. 37, 1149–1157 (2012).

    Article  CAS  Google Scholar 

  33. Hebling, J., Yeh, K-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, B6 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the US Office of Naval Research (awards nos. N000140911064, N000141310712 and N000141310865), the National Science Foundation (ECCS 1309750) and Intelligence Advanced Research Projects Activity. M.S.F. was supported in part by an Australian Research Council Laureate Fellowship. The authors thank V. D. Wheeler and C. Eddy, Jr, for discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.C., A.B.S., J.Y., T.E.M., H.D.D. and M.S.F. conceived the experiments. X.C. fabricated the graphene photodetectors. X.C., A.B.S. and G.S.J. carried out the terahertz measurements. X.C., R.J.S., M.M.J. and S.L. carried out the near-infrared and pulsed laser measurements. X.C. and J.Y. carried out the d.c. and a.c. transport measurements. L.O.N., R.L.M-W. and D.K.G. synthesized the graphene on SiC. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Michael S. Fuhrer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Sushkov, A., Suess, R. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotech 9, 814–819 (2014). https://doi.org/10.1038/nnano.2014.182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing