Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Valley and band structure engineering of folded MoS2 bilayers

Abstract

Artificial structures made of stacked two-dimensional crystals have recently been the focus of intense research activity1. As in twisted or stacked graphene layers2,3,4,5,6, these structures can show unusual behaviours and new phenomena1. Among the various layered compounds that can be exfoliated, transition-metal dichalcogenides7 exhibit interesting properties governed by their structural symmetry8,9 and interlayer coupling10,11,12,13, which are highly susceptible to stacking. Here, we obtain—by folding exfoliated MoS2 monolayers—MoS2 bilayers with different stacking orders, as monitored by second harmonic generation and photoluminescence. Appropriate folding can break the inversion symmetry and suppress interlayer hopping, evoking strong valley14,15,16 and spin17,18,19 polarizations that are not achieved in natural MoS2 bilayers of Bernal stacking20. It can also enlarge the indirect bandgap by more than 100 meV through a decrease in the interlayer coupling. Our work provides an effective and versatile means to engineer transition-metal dichalcogenide materials with desirable electronic and optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopy and characterization of monolayer, folded bilayers, and trilayer of MoS2.
Figure 2: Second harmonic generation (SHG) anisotropy and microscopic structures of folded MoS2 bilayers.
Figure 3: Photoluminescence spectra and band structures of MoS2 bilayers with different stacking orders.
Figure 4: Valley and spin polarizations in 2H-like(Mo), 3R-like and 2H bilayers.

Similar content being viewed by others

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  3. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  CAS  Google Scholar 

  4. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  5. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nature Phys. 6, 109–113 (2010).

    Article  Google Scholar 

  6. Kim, K. et al. Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).

    Article  Google Scholar 

  7. Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  8. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  9. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  Google Scholar 

  10. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  11. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  12. Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2 and WSe2 . Nano Lett. 13, 5627–5634 (2013).

    Article  CAS  Google Scholar 

  13. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nature Nanotech. 9, 111–115 (2014).

    Article  CAS  Google Scholar 

  14. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  15. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  16. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  17. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 2053 (2013).

    Article  Google Scholar 

  18. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nature Phys. 10, 130–134 (2014).

    Article  CAS  Google Scholar 

  19. Zhu, B., Zeng, H., Dai, J., Gong, Z. & Cui, X. Anomalous robust valley polarization and valley coherence in bilayer WS2 . Preprint at http://arxiv.org/abs/1403.6224 (2014).

  20. Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013).

    Article  CAS  Google Scholar 

  21. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

    Article  CAS  Google Scholar 

  22. Gong, Y. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14, 442–449 (2014).

    Article  CAS  Google Scholar 

  23. Mann, J. et al. 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv. Mater. 26, 1399–1404 (2014).

    Article  CAS  Google Scholar 

  24. Molina-Sanchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2 . Phys. Rev. B 84, 155413 (2011).

    Article  Google Scholar 

  25. Shen, Y. R. The Principles of Nonlinear Optics 27 (Wiley, 2003).

    Google Scholar 

  26. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  CAS  Google Scholar 

  27. Kumar, N. et al. Second harmonic microscopy of monolayer MoS2 . Phys. Rev. B 87, 161403(R) (2013).

    Article  Google Scholar 

  28. Malard, L. M. et al. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 207401(R) (2013).

    Article  Google Scholar 

  29. Zeng, H. et al. Optical signature of symmetry variations and spin–valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  30. Bistrizer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  Google Scholar 

  31. Sato, K. et al. Zone folding effect in Raman G-band intensity of twisted bilayer graphene. Phys. Rev. B 86, 125414 (2012).

    Article  Google Scholar 

  32. Kim, K. et al. Multiply folded graphene. Phys. Rev. B 83, 235433 (2011).

    Article  Google Scholar 

  33. Liu, W-T. & Shen, Y. R. Surface vibrational modes of α-quartz(0001) probed by sum-frequency spectroscopy. Phys. Rev. Lett. 101, 016101 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the National Basic Research Program of China, the Ministry of Education of China and the Shu Guang Project (grant agreements nos. 2014CB921600, 2012CB921400, 11104036, 11104033, 20110071120003, NCET-11-0110 and 11SG05).

Author information

Authors and Affiliations

Authors

Contributions

S.W.W. and W.T.L. designed the project and prepared the manuscript. T.J. prepared the sample and performed the measurements. H.R.L. and X.G.G. carried out the ab initio calculation. D.H., S.Z. and Y.G.L. built the low-temperature experimental set-up. All authors contributed to analysis of the results and writing the manuscript.

Corresponding authors

Correspondence to Xingao Gong, Wei-Tao Liu or Shiwei Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Liu, H., Huang, D. et al. Valley and band structure engineering of folded MoS2 bilayers. Nature Nanotech 9, 825–829 (2014). https://doi.org/10.1038/nnano.2014.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing