Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses

An Erratum to this article was published on 06 October 2014

This article has been updated


The nuclear spins in nanostructured semiconductors play a central role in quantum applications1,2,3,4. The nuclear spins represent a useful resource for generating local magnetic5 fields but nuclear spin noise represents a major source of dephasing for spin qubits2,3. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts6; and nanoscale NMR is hard to detect7,8. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experiment: concepts and design.
Figure 2: Adiabatic passage of the nuclear spin ensemble.
Figure 3: Nuclear spin inversion at the first quantum transition in chirped NMR.
Figure 4: Isotope-sensitive NMR with chirped pulses.

Change history

  • 02 September 2014

    In the version of this Letter originally published, the first name of Gunter Wüst was misspelt. This error has now been corrected in the online versions of the Letter.


  1. Ribeiro, H. & Burkard, G. Nuclear spins keep coming back. Nature Mater. 12, 469–471 (2013).

    Article  CAS  Google Scholar 

  2. Warburton, R. J. Single spins in self-assembled quantum dots. Nature Mater. 12, 483–493 (2013).

    Article  CAS  Google Scholar 

  3. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Mater. 12, 494–504 (2013).

    Article  CAS  Google Scholar 

  4. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  CAS  Google Scholar 

  5. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  CAS  Google Scholar 

  6. Chekhovich, E. et al. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotech. 7, 646–650 (2012).

    Article  CAS  Google Scholar 

  7. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  8. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  9. Maletinsky, P., Kroner, M. & Imamoglu, A. Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys. 5, 407–411 (2009).

    Article  CAS  Google Scholar 

  10. Latta, C., Srivastava, A. & Imamoglu, A. Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled ingaas quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

    Article  Google Scholar 

  11. Gammon, D. et al. Nuclear spectroscopy in single quantum dots: nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).

    Article  Google Scholar 

  12. Makhonin, M. et al. Fast control of nuclear spin polarization in an optically pumped single quantum dot. Nature Mater. 10, 844–848 (2011).

    Article  CAS  Google Scholar 

  13. Flisinski, K. et al. Optically detected magnetic resonance at the quadrupole-split nuclear states in (In,Ga)As/GaAs quantum dots. Phys. Rev. B 82, 081308 (2010).

    Article  Google Scholar 

  14. Cherbunin, R. V. et al. Resonant nuclear spin pumping in (In,Ga)As quantum dots. Phys. Rev. B 84, 041304 (2011).

    Article  Google Scholar 

  15. Bulutay, C. Quadrupolar spectra of nuclear spins in strained InxGa1−xAs quantum dots. Phys. Rev. B 85, 115313 (2012).

    Article  Google Scholar 

  16. Peddibhotla, P. et al. Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nature Phys. 9, 631–635 (2013).

    Article  CAS  Google Scholar 

  17. Shevchenko, S., Ashhab, S. & Nori, F. Landau–Zener–Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010).

    Article  CAS  Google Scholar 

  18. Poggio, M., Degen, C. L., Rettner, C., Mamin, H. & Rugar, D. Nuclear magnetic resonance force microscopy with a microwire RF source. Appl. Phys. Lett. 90, 263111 (2007).

    Article  Google Scholar 

  19. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nature Phys. 9, 570–575 (2013).

    Article  CAS  Google Scholar 

  20. Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    Article  Google Scholar 

  21. Kuhlmann, A. V. et al. Linewidth of single photons from a single quantum dot: key role of nuclear spins. Preprint at (2013).

  22. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  CAS  Google Scholar 

  23. Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

    Article  Google Scholar 

  24. Vega, S. Fictitious spin 1/2 operator formalism for multiple quantum NMR. J. Chem. Phys. 68, 5518–5527 (1978).

    Article  CAS  Google Scholar 

  25. Haase, J., Conradi, M., Grey, C. & Vega, A. Population transfers for NMR of quadrupolar spins in solids. J. Magn. Reson. A 109, 90–97 (1994).

    Article  CAS  Google Scholar 

  26. Van Veenendaal, E., Meier, B. H. & Kentgens, A. P. M. Frequency stepped adiabatic passage excitation of half-integer quadrupolar spin systems. Mol. Phys. 93, 195–213 (1998).

    Article  CAS  Google Scholar 

  27. Stückelberg, E. Theorie der unelastischen Stössen zwischen Atomen. Helv. Phys. Acta. 5, 369 (1932).

    Google Scholar 

  28. Yoakum, S., Sirko, L. & Koch, P. M. Stueckelberg oscillations in the multiphoton excitation of helium Rydberg atoms: observation with a pulse of coherent field and suppression by additive noise. Phys. Rev. Lett. 69, 1919–1922 (1992).

    Article  CAS  Google Scholar 

  29. Oliver, W. D. et al. Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005).

    Article  CAS  Google Scholar 

  30. Huang, P. et al. Landau–Zener–Stückelberg interferometry of a single electronic spin in a noisy environment. Phys. Rev. X 1, 011003 (2011).

    Google Scholar 

Download references


M.M., G.W., A.V.K., M.P. and R.J.W. acknowledge support from NCCR QSIT and EU ITN S3NANO; M.P. and F.X. from the SNI; and A.L., D.R. and A.D.W. from Mercur Pr-2013-0001 and 16KIS0109. The authors thank P. Peddibhotla and C. Kloeffel for technical assistance and C. Degen, P. Maletinsky and H. Ribeiro for discussions.

Author information

Authors and Affiliations



M.M. and G.W. carried out the experiments, the data analysis and the theoretical modelling. A.V.K. provided expertise in resonance fluorescence on single quantum dots, and F.X. provided expertise in microwire design and sample processing. F.X. and M.P. provided electronics and software expertise for the NMR. A.L., D.R. and A.D.W. carried out the molecular beam epitaxy. M.M., G.W., M.P. and R.J.W. took the lead in writing the paper and Supplementary Information. R.J.W. conceived and managed the project.

Corresponding author

Correspondence to Mathieu Munsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2273 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munsch, M., Wüst, G., Kuhlmann, A. et al. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses. Nature Nanotech 9, 671–675 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research