Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An antidamping spin–orbit torque originating from the Berry curvature

Subjects

Abstract

Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin–orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin–orbit torque that stems from the Berry curvature, in analogy to the origin of the intrinsic spin Hall effect. We chose the ferromagnetic semiconductor (Ga,Mn)As as a material system because its crystal inversion asymmetry allows us to measure bare ferromagnetic films, rather than ferromagnetic–paramagnetic heterostructures, eliminating by design any spin Hall effect contribution. We provide an intuitive picture of the Berry curvature origin of this antidamping spin–orbit torque as well as its microscopic modelling. We expect the Berry curvature spin–orbit torque to be of comparable strength to the spin-Hall-effect-driven antidamping torque in ferromagnets interfaced with paramagnets with strong intrinsic spin Hall effect.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spin–orbit coupling and antidamping SOT.
Figure 2: Spin–orbit FMR experiment.
Figure 3: In-plane and out-of-plane SOT fields.
Figure 4: Theoretical modelling of measured angular dependencies of SOT fields.

References

  1. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Article  Google Scholar 

  2. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Article  Google Scholar 

  3. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  4. Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

    Article  Google Scholar 

  5. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  6. Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Article  Google Scholar 

  7. Matos-Abiague, A. & Rodriguez-Suarez, R. L. Spin–orbit coupling mediated spin torque in a single ferromagnetic layer. Phys. Rev. B 80, 094424 (2009).

    Article  Google Scholar 

  8. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    CAS  Article  Google Scholar 

  9. Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2010).

    Article  Google Scholar 

  10. Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl. Phys. Lett. 97, 222501 (2010).

    Article  Google Scholar 

  11. Fang, D. et al. Spin–orbit driven ferromagnetic resonance: a nanoscale magnetic characterization technique. Nature Nanotech. 6, 413–417 (2011).

    CAS  Article  Google Scholar 

  12. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  13. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  Google Scholar 

  14. Hals, K. M. D., Brataas, A. & Tserkovnyak, Y. Scattering theory of charge-current-induced magnetization dynamics. Europhys. Lett. 90, 47002 (2010).

    Article  Google Scholar 

  15. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    CAS  Article  Google Scholar 

  16. Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011).

    Article  Google Scholar 

  17. Kim, K-W., Seo, S-M., Ryu, J., Lee, K-J. & Lee, H-W. Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin–orbit coupling. Phys. Rev. B 85, 180404(R) (2012).

    Article  Google Scholar 

  18. Pesin, D. A. & MacDonald, A. H. Quantum kinetic theory of current-induced torques in Rashba ferromagnets. Phys. Rev. B 86, 014416 (2012).

    Article  Google Scholar 

  19. Wang, X. & Manchon, A. Diffusive spin dynamics in ferromagnetic thin films with a Rashba interaction. Phys. Rev. Lett. 108, 117201 (2012).

    Article  Google Scholar 

  20. Haney, P. M., Lee, H-W., Lee, K-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

  21. Van der Bijl, E. & Duine, R. A. Current-induced torques in textured Rashba ferromagnets. Phys. Rev. B 86, 094406 (2012).

    Article  Google Scholar 

  22. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta–CoFeB–MgO. Nature Mater. 12, 240–245 (2012).

    Article  Google Scholar 

  23. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    CAS  Article  Google Scholar 

  24. Li, H., Wang, X., Dogan, F. & Manchon, A. Tailoring spin–orbit torque in diluted magnetic semiconductors. Appl. Phys. Lett. 102, 192411 (2013).

    Article  Google Scholar 

  25. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2011).

    Article  Google Scholar 

  26. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  27. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    CAS  Article  Google Scholar 

  28. Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    CAS  Article  Google Scholar 

  29. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  30. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    CAS  Article  Google Scholar 

  31. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin Hall effect in a two dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    CAS  Article  Google Scholar 

  32. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    CAS  Article  Google Scholar 

  33. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Article  Google Scholar 

  34. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Article  Google Scholar 

  35. Ralph, D., Stiles, M. & Bader, S. Current perspectives: spin transfer torques. J. Magn. Magn. Mater. 320, 1189–1311 (2008).

    Article  Google Scholar 

  36. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater. 11, 372–381 (2012).

    CAS  Article  Google Scholar 

  37. Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

    Article  Google Scholar 

  38. Engel, H-A., Rashba, E. I. & Halperin, B. I. Out-of-plane spin polarization from in-plane electric and magnetic fields. Phys. Rev. Lett. 98, 036602 (2007).

    Article  Google Scholar 

  39. Jungwirth, T., Niu, Q. & MacDonald, A. H. Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002).

    CAS  Article  Google Scholar 

  40. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  41. Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

    CAS  Article  Google Scholar 

  42. Tulapurkar, A. A. et al. Spin–torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    CAS  Article  Google Scholar 

  43. Nemec, P. et al. The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As. Nature Commun. 4, 1422 (2013).

    CAS  Article  Google Scholar 

  44. Harder, M., Cao, Z. X., Gui, Y. S., Fan, X. L. & Hu, C. M. Analysis of the line shape of electrically detected ferromagnetic resonance. Phys. Rev. B 84, 054423 (2011).

    Article  Google Scholar 

  45. Silver, M., Batty, W., Ghiti, A. & OReilly, E. P. Strain-induced valence-subband splitting in III-V semiconductors. Physica B 46, 6781–6788 (1992).

    CAS  Google Scholar 

  46. Stefanowicz, W. et al. Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs. Phys. Rev. B 81, 155203 (2010).

    Article  Google Scholar 

  47. Vanhaverbeke, A. & Viret, M. Simple model of current-induced spin torque in domain walls. Phys. Rev. B 75, 024411 (2007).

    Article  Google Scholar 

  48. Fernández-Rossier, J., Núñez, A. S., Abolfath, M. & MacDonald, A. H. Optical spin transfer in ferromagnetic semiconductors. Preprint at http://lanl.arXiv.org/cond-mat/0304492 (2003).

  49. Nemec, P. et al. Experimental observation of the optical spin transfer torque. Nature Phys. 8, 411–415 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the EU European Research Council (ERC) advanced grant no. 268066, from the Ministry of Education of the Czech Republic grant no. LM2011026, from the Grant Agency of the Czech Republic grant no. 14-37427G, from the Academy of Sciences of the Czech Republic Praemium Academiae, and support from US grants ONR-N000141110780, NSF-DMR-1105512 and NSF TAMUS LSAMP BTD award 1026774. A.J.F. acknowledges support from a Hitachi research fellowship. H.K. acknowledges financial support from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

Theory and data modelling were performed by T.J., E.K.V., L.P.Z., K.V. and J.S. Materials were prepared by V.N., R.P.C. and B.L.G. Sample preparation was performed by A.C.I. Experiments and data analysis were carried out by H.K., D.F., J.W. and A.J.F. The manuscript was written by T.J., A.J.F., H.K. and J.S., and project planning was performed by T.J., A.J.F., J.S. and H.K.

Corresponding author

Correspondence to A. J. Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 734 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kurebayashi, H., Sinova, J., Fang, D. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech 9, 211–217 (2014). https://doi.org/10.1038/nnano.2014.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.15

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research