Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advanced scanning probe lithography

Abstract

The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scanning probe lithography.
Figure 2: Nanofabrication landscape.
Figure 3: Thermal and thermochemical scanning probe lithography.
Figure 4: Greyscale thermal and thermochemical scanning probe lithography.
Figure 5: Oxidation scanning probe lithography.
Figure 6: Silicon and graphene nanolectronic devices fabricated by oxidation scanning probe lithography.

References

  1. 1

    Saavedra, H. M. et al. Hybrid strategies in nanolithography. Rep. Prog. Phys. 73, 036501 (2010).

    Google Scholar 

  2. 2

    Acikoz, C., Hempenius, M. A., Huskens, J. & Vancso, G. J. Polymers in conventional and alternative lithography for the fabrication of nanosctructures. Eur. Poly. J. 47, 2033–2052 (2011).

    Google Scholar 

  3. 3

    Lipson, A. L. & Hersam, M. C. Conductive scanning probe characterization and nanopatterning of electronic and energy materials. J. Phys. Chem. C 117, 7953–7963 (2013).

    CAS  Google Scholar 

  4. 4

    Pires, D. et al. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010). First implementation of precise three-dimensional relief patterning using thermal scanning probe lithography.

    CAS  Google Scholar 

  5. 5

    Fuechsle, M. et al. A single-atom transistor. Nature Nanotech. 7, 242–246 (2012).

    CAS  Google Scholar 

  6. 6

    Martinez, R. V. et al. Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles. Adv. Mater. 22, 588–591 (2010).

    CAS  Google Scholar 

  7. 7

    International Technology Roadmap for Semiconductors 2013 Edition, Lithography Summary; http://www.itrs.net/Links/2013ITRS/2013Chapters/2013Litho_Summary.pdf (2013).

  8. 8

    Tennant, D. M. in Nanotechnology (ed. Timp, G.) Ch. 4, 161–205 (Springer, 1999).

    Google Scholar 

  9. 9

    Van Oven, J., Berwald, F., Berggren, K., Kruit, P. & Hagen, C. Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si. J. Vac. Sci. Technol. B 29, 06F305 (2011).

    Google Scholar 

  10. 10

    de Boer, G. et al. MAPPER: progress toward a high-volume manufacturing system. Proc. SPIE 8680, 86800O (2013).

    Google Scholar 

  11. 11

    Gubiotti, T. et al. Reflective electron beam lithography: lithography results using CMOS controlled digital pattern generator chip. Proc. SPIE 8680, 86800H (2013).

    Google Scholar 

  12. 12

    van der Drift, E. & Maas, D. J. in Nanotechnology (eds Stepanova, M. & Dew, S.) Ch. 4, 93–116 (Springer, 2012).

    Google Scholar 

  13. 13

    Gonzalez, C. M. et al. Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair. J. Vac. Sci. Technol. B 32, 021602 (2014).

    Google Scholar 

  14. 14

    Lin, Y. C. et al. Graphene annealing: how clean can it be? Nano Lett. 12, 414–419 (2012).

    CAS  Google Scholar 

  15. 15

    Martinez, R. V., Martinez, J. & Garcia, R. Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21, 245301 (2010).

    Google Scholar 

  16. 16

    Weng, L., Zhang, L., Chen, Y. P. & Rokhinson, L. P. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107 (2008).

    Google Scholar 

  17. 17

    Kim, S. et al. Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates. Adv. Mater. 23, 3786–3790 (2011).

    CAS  Google Scholar 

  18. 18

    Wang, D. et al. Direct writing and characterization of poly(p-phenylene vinylene) nanostructures. Appl. Phys. Lett. 95, 233108 (2009).

    Google Scholar 

  19. 19

    Fenwick, O. et al. Thermochemical nanopatterning of organic semiconductors. Nature Nanotech. 4, 664–668 (2009).

    CAS  Google Scholar 

  20. 20

    Carroll, K. M. et al. Fabricating nanoscale gradients with thermochemical nanolithography. Langmuir 29, 8675–8682 (2013).

    CAS  Google Scholar 

  21. 21

    Felts, J. R., Onses, M. S., Rogers, J. A. & King, W. P. Nanometer scale alignment of block-copolymer domains by means of a scanning probe tip. Adv. Mater. 26, 2999–3002 (2014).

    CAS  Google Scholar 

  22. 22

    Carroll, K. M. et al. Parallelization of thermochemical nanolithography. Nanoscale 6, 1299–1304 (2014).

    CAS  Google Scholar 

  23. 23

    Mamin, H. & Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992).

    CAS  Google Scholar 

  24. 24

    King, W. P. et al. Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transfer 16, 287–326 (2013). Review on scanning probe microscopy and lithography using heatable tips.

    Google Scholar 

  25. 25

    Szoszkiewicz, R. et al. High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Lett. 7, 1064–1069 (2007). Example of the capabilities of thermochemical scanning probe lithography for high resolution and fast nanopatterning.

    CAS  Google Scholar 

  26. 26

    Gotsmann, B., Duerig, U., Frommer, J. & Hawker, C. J. Exploiting chemical switching in a Diels-Alder polymer for nanoscale probe lithography and data storage. Adv. Funct. Mater. 16, 1499–1505 (2006).

    CAS  Google Scholar 

  27. 27

    Cheong, L. L. et al. Thermal probe mask-less lithography for 27.5 nm half-pitch Si technology. Nano Lett. 13, 4485–4491 (2013).

    CAS  Google Scholar 

  28. 28

    Knoll, A. W. et al. Probe-based 3-D nanolithography using self-amplified depolymerization polymers. Adv. Mater. 22, 3361–3365 (2010).

    CAS  Google Scholar 

  29. 29

    Paul, P., Knoll, A., Holzner, F., Despont, M. & Duerig, U. Rapid turnaround scanning probe nanolithography. Nanotechnology 22, 275306 (2011).

    Google Scholar 

  30. 30

    Paul, P., Knoll, A., Holzner, F. & Duerig, U. Field stitching in thermal probe lithography by means of surface roughness correlation. Nanotechnology 23, 385307 (2012).

    Google Scholar 

  31. 31

    Shaw, J. E., Stavrinou, P. N. & Anthopoulos, T. D. On-demand patterning of nanostructured pentacene transistors by scanning thermal lithography. Adv. Mater. 25, 552–558 (2013). On-demand patterning of field-effect transistors from a pentacene precursor by thermal scanning probe lithography.

    CAS  Google Scholar 

  32. 32

    Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    CAS  Google Scholar 

  33. 33

    Lee, W.-K. et al. Nanoscale reduction of graphene fluoride via thermochemical nanolithography. ACS Nano 7, 6219–6224 (2013).

    CAS  Google Scholar 

  34. 34

    Duvigneau, J., Schoenherr, H. & Vancso, G. J. Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation. Langmuir 24, 10825–10832 (2008).

    CAS  Google Scholar 

  35. 35

    Wang, D. et al. Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects. Adv. Funct. Mater. 19, 3696–3702 (2009).

    CAS  Google Scholar 

  36. 36

    Holzner, F. et al. Directed placement of gold nanorods using a removable template for guided assembly. Nano Lett. 11, 3957–3962 (2011).

    CAS  Google Scholar 

  37. 37

    Holzner, F. et al. High density multi-level recording for archival data preservation. Appl. Phys. Lett. 99, 023110 (2011).

    Google Scholar 

  38. 38

    Torrey, J. et al. Scanning probe direct-write of germanium nanostructures. Adv. Mater. 22, 4639–4642 (2010).

    CAS  Google Scholar 

  39. 39

    Garcia, R. et al. Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope. Appl. Phys. Lett. 96, 143110 (2010).

    Google Scholar 

  40. 40

    Suez, I. et al. High-field scanning probe lithography in hexadecane: Transitioning from field induced oxidation to solvent decomposition through surface modification. Adv. Mater. 19, 3570–3573 (2007).

    CAS  Google Scholar 

  41. 41

    Dagata, J. A. et al. Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56, 2001–2003 (1990).

    CAS  Google Scholar 

  42. 42

    Garcia, R., Martinez, R. V. & Martinez, J. Nanochemistry and scanning probe nanolithographies. Chem. Soc. Rev. 35, 29–38 (2006).

    CAS  Google Scholar 

  43. 43

    Yan, N. et al. Water-mediated electrochemical nano-writing on thin ceria films. Nanotechnology 25, 075701 (2014).

    Google Scholar 

  44. 44

    Li, Y., Maynor, B. W. & Liu, J. Electrochemical AFM 'dip-pen' nanolithography. J. Am. Chem. Soc. 123, 2105–2106 (2001).

    CAS  Google Scholar 

  45. 45

    Arruda, T. M. et al. Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: Environmental and current spreading effects. ACS Nano 7, 8175–8182 (2013).

    CAS  Google Scholar 

  46. 46

    Wei, Y. M. et al. The creation of nanostructures on an Au(111) electrode by tip-induced iron deposition from an ionic liquid. Small 4, 1355–1358 (2008).

    CAS  Google Scholar 

  47. 47

    Obermair, C., Kress, M., Wagner, A. & Schimmel, T. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope. Beilstein J. Nanotech. 3, 824–830 (2012).

    Google Scholar 

  48. 48

    Zhang, K. et al. Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nature Commun. 3, 1194 (2012).

    Google Scholar 

  49. 49

    Liu, J.-F. & Miller, G. P. Field-assisted nanopatterning of metals, metal oxides and metal salts. Nanotechnology 20, 055303 (2009).

    Google Scholar 

  50. 50

    Ferris, R. et al. Field-induced nanolithography for patterning of non-fouling polymer brush surfaces. Small 7, 3032–3037 (2011).

    CAS  Google Scholar 

  51. 51

    Kaestner, M., Hofer, M. & Rangelow, I. W. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography. J. Micro/Nanolith. MEMS MOEMS 12, 031111 (2013).

    Google Scholar 

  52. 52

    Lyuksyutov, S. F. et al. Electrostatic nanolithography in polymers using atomic force microscopy. Nature Mater. 2, 468–472 (2003).

    CAS  Google Scholar 

  53. 53

    Lyding, J. W., Shen, T. C., Hubacek, J. S., Tucker, J. R. & Abeln, G. C. Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh-vacuum scanning tunneling microscope. Appl. Phys. Lett. 64, 2010–2012 (1994).

    CAS  Google Scholar 

  54. 54

    Blanco, E. M., Nesbitt, S. A., Horton, M. A. & Mesquida, P. A multiprotein microarray on silicon dioxide fabricated by using electric-droplet lithography. Adv. Mater. 19, 2469–2473 (2007).

    CAS  Google Scholar 

  55. 55

    Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K. & Hiranaga, Y. Nanodomain manipulation for ultrahigh density ferroelectric data storage. Nanotechnology 17, S137–S141 (2006).

    CAS  Google Scholar 

  56. 56

    Tayebi, N. et al. Tuning the built-in electric field in ferroelectric Pb(Zr0.2Ti0.8)O3 films for long-term stability of single-digit nanometer inverted domains. Nano Lett. 12, 5455–5463 (2012).

    CAS  Google Scholar 

  57. 57

    Weber, B. et al. Ohm's law survives to the atomic scale. Science 335, 64–67 (2012).

    CAS  Google Scholar 

  58. 58

    Weber, B., Mahapatra, S., Watson, T. & Simmons, M. Y. Engineering independent electrostatic control of atomic-scale (4 nm) silicon double quantum dots. Nano Lett. 12, 4001–4006 (2012).

    CAS  Google Scholar 

  59. 59

    Tayebi, N. et al. An ultraclean tip-wear reduction scheme for ultrahigh density scanning probe-based data storage. ACS Nano 4, 5713–5720 (2010).

    CAS  Google Scholar 

  60. 60

    Forrester, M. et al. Charge-based scanning probe readback of nanometer-scale ferroelectric domain patterns at megahertz rates. Nanotechnology 20, 225501 (2009).

    Google Scholar 

  61. 61

    Martinez, R. V., Losilla, N. S., Martinez, J. & Garcia, R. Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions. Nano Lett. 7, 1846–1850 (2007). This contribution reports the smallest periodic pattern fabricated on silicon at atmospheric pressure and room temperature.

    CAS  Google Scholar 

  62. 62

    Vasko, S. E. et al. Serial and parallel Si, Ge, and SiGe direct-write with scanning probes and conducting stamps. Nano Lett. 11, 2386–2389 (2011).

    CAS  Google Scholar 

  63. 63

    Lyo, I. W. & Avouris, P. Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM. Science 253, 173–176 (1991).

    CAS  Google Scholar 

  64. 64

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    CAS  Google Scholar 

  65. 65

    Custance, O., Perez, R. & Morita, S. Atomic force microscopy as a tool for atom manipulation. Nature Nanotech. 4, 803–810 (2009). Review on the use of the force microscope for atomic-scale manipulation.

    CAS  Google Scholar 

  66. 66

    Minne, S. C. et al. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998).

    CAS  Google Scholar 

  67. 67

    Lorenzoni, M. & Torre, B. Scanning probe oxidation of SiC, fabrication and kinetics considerations. Appl. Phys. Lett. 103, 163109 (2013).

    Google Scholar 

  68. 68

    Kim, H. et al. Effects of ion beam irradiated Si on atomic force microscopy local oxidation. Chem. Phys. Lett. 566, 44–49 (2013).

    CAS  Google Scholar 

  69. 69

    Zeira, A. et al. A bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction. Langmuir 27, 8562–8575 (2011).

    CAS  Google Scholar 

  70. 70

    Fabre, B. & Herrier, C. Automated sub-100 nm local anodic oxidation-directed nanopatterning of organic monolayer-modified silicon surfaces. RSC Adv. 2, 168–175 (2012).

    CAS  Google Scholar 

  71. 71

    Meroni, D., Ardizzone, S., Schubert, U. S. & Hoeppener, S. Probe-based electro-oxidative lithography of OTS SAMs deposited onto transparent ITO substrates. Adv. Funct. Mater. 22, 4376–4382 (2012).

    CAS  Google Scholar 

  72. 72

    Martin-Olmos, C. et al. Conductivity of SU-8 thin films through atomic force microscopy nano-patterning. Adv. Funct. Mater. 22, 1482–1488 (2012).

    CAS  Google Scholar 

  73. 73

    Martinez, R. V. et al. Nanoscale deposition of single-molecule magnets onto SiO2 patterns. Adv. Mater. 19, 291–295 (2007).

    CAS  Google Scholar 

  74. 74

    Berson, J., Zeira, A., Maoz, R. & Sagiv, J. Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits. Beilstein J. Nanotech. 3, 134–143 (2012). Comprehensive study of the use of oxidation scanning probe lithography to pattern organic monolayers and their use as templates for the deposition of metallic nanoparticles.

    Google Scholar 

  75. 75

    Coronado, E. et al. Nanopatterning of anionic nanoparticles based on magnetic prussian-blue analogues. Adv. Funct. Mater. 22, 3625–3633 (2012).

    CAS  Google Scholar 

  76. 76

    Khatri, O. P., Han, J., Ichiii, T., Murase, K. & Sugimura, H. J. Self-assembly guided one-dimensional arrangement of gold nanoparticles: A facile approach. J. Phys. Chem. C 112, 16182–16185 (2008).

    CAS  Google Scholar 

  77. 77

    Oria, L., Ruiz de Luzuriaga, A., Alduncín, J. A. & Perez-Murano, F. Polystyrene as a brush layer for directed self-assembly of block co-polymers. Microelec. Eng. 110, 234–240 (2013).

    CAS  Google Scholar 

  78. 78

    Benetti, E. M., Chung, H. J. & Vancso, G. J. pH responsive polymeric brush nanostructures: Preparation and characterization by scanning probe oxidation and surface initiated polymerization. Macromol. Rapid Commun. 30, 411–417 (2009).

    CAS  Google Scholar 

  79. 79

    Druzhinina, T. S., Hoeppener, C., Hoeppener, S. & Schubert, U. S. Hierarchical, guided self-assembly of preselected carbon nanotubes for the controlled fabrication of CNT structures by electrooxidative nanolithography. Langmuir 29, 7515–7520 (2013).

    CAS  Google Scholar 

  80. 80

    Martin-Sanchez, J., Alonso-Gonzalez, P., Herranz, J., Gonzalez, Y. & Gonzalez, L. Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography. Nanotechnology 20, 125302 (2009).

    CAS  Google Scholar 

  81. 81

    Delacour, C., Pannetier, B., Villegier, J. C. & Bouchiat, V. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: Application to single photon detection. Nano Lett. 12, 3501–3506 (2012).

    CAS  Google Scholar 

  82. 82

    Yokoo, A., Tanabe, T., Kuramochi, E. & Notomi, M. Ultrahigh-Q nanocavities written with a nanoprobe. Nano Lett. 11, 3634–3642 (2011).

    CAS  Google Scholar 

  83. 83

    Komijani, Y. et al. Origins of conductance anomalies in a p-type GaAS quantum point contact. Phys. Rev. B 87, 245406 (2013).

    Google Scholar 

  84. 84

    Fuhrer, A. S. et al. Energy spectra of quantum rings. Nature 413, 822–825 (2001).

    CAS  Google Scholar 

  85. 85

    Ubbelohde, N., Fricke, C., Hohls, F. & Haug, R. J. Spin-dependent shot noise enhancement in a quantum dot. Phys. Rev. B 88, 041304 (2013).

    Google Scholar 

  86. 86

    Tsai, J. T. H., Hsu, C. H., Hsu, C. Y. & Yang, C. S. Rapid synthesis of gallium oxide resistive random access memory by atomic force microscopy local anodic oxidation. Electron. Lett. 49, 554–555 (2013).

    CAS  Google Scholar 

  87. 87

    Schmidt, H., Rode, J. C., Belke, C., Smirnov, D. & Haug, R. J. Mixing of edge states at a bipolar graphene junction. Phys. Rev. B 88, 075418 (2013).

    Google Scholar 

  88. 88

    Kurra, N., Reifenberger, R. G. & Kulkarni, G. U. Nanocarbon-scanning probe microscopy synergy: Fundamental aspects to nanoscale devices. ACS Appl. Mater. Interf. 6, 6147–6163 (2014).

    CAS  Google Scholar 

  89. 89

    Byun, I. S. et al. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5, 6417–6424 (2011).

    CAS  Google Scholar 

  90. 90

    Puddy, R. K., Chua, C. J. & Buitelaar, M. R. Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. Appl. Phys. Lett. 103, 183117 (2013).

    Google Scholar 

  91. 91

    Neubek, S. et al. From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6, 1469–1473 (2010).

    Google Scholar 

  92. 92

    Masubuchi, S., Arai, M. & Machida, T. Atomic force microscopy based tunable local anodic oxidation of graphene. Nano Lett. 11, 4542–4546 (2011).

    CAS  Google Scholar 

  93. 93

    Matsumoto, K., Gotoh, Y., Maeda, T., Dagata, J. A. & Harris, J. S. Room-temperature single-electron memory made by pulse-mode atomic force microscopy nano oxidation process on atomically flat α-alumina substrate. Appl. Phys. Lett. 76, 239–241 (2000).

    CAS  Google Scholar 

  94. 94

    Snow, E. S. & Campbell, P. M. AFM fabrication of sub-10 nanometer metal-oxide devices with in situ control of electrical properties. Science 270, 1639–1641 (1995). One of the earliest applications of oxidation scanning probe lithography to fabricate nanoscale transistors.

    CAS  Google Scholar 

  95. 95

    Larki, F. et al. Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography. Beilstein J. Nanotech. 3, 817–823 (2012).

    Google Scholar 

  96. 96

    Cavallini, M. et al. Additive nanoscale embedding of functional nanoparticles on silicon surface. Nanoscale 2, 2069–2072 (2010).

    CAS  Google Scholar 

  97. 97

    Cramer, T., Zerbetto, F. & Garcia, R. Molecular mechanism of water bridge buildup: Field-induced formation of nanoscale menisci. Langmuir 24, 6116–6120 (2008).

    CAS  Google Scholar 

  98. 98

    Skinner, L. B. et al. Structure of the floating water bridge and water in an electric field. Proc. Natl Acad. Sci. USA 109, 16463–16468 (2012).

    CAS  Google Scholar 

  99. 99

    Calleja, M., Tello, M. & Garcia, R. Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 92, 5539–5542 (2002).

    CAS  Google Scholar 

  100. 100

    Kinser, C. R., Schmitz, M. J. & Hersam, M. C. Kinetics and mechanism of atomic force microscope local oxidation on hydrogen-passivated silicon in inert organic solvents. Adv. Mater. 18, 1377–1380 (2006).

    CAS  Google Scholar 

  101. 101

    Maoz, R., Cohen, S. R. & Sagiv, J. Nanoelectrochemical patterning of monolayer surfaces: Toward spatially defined self-assembly of nanostructures. Adv. Mater. 11, 55–61 (1999).

    CAS  Google Scholar 

  102. 102

    Ryu, Y. K., Chiesa, M. & Garcia, R. Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology 24, 315205 (2013).

    Google Scholar 

  103. 103

    Chiesa, M. et al. Detection of the early stage of recombinational DNA repair by silicon nanowire transistors. Nano Lett. 12, 1275–1281 (2012).

    CAS  Google Scholar 

  104. 104

    Tseng, A. A. Removing material using atomic force microscopy with single- and multiple-tip sources. Small 7, 3409–3427 (2011).

    CAS  Google Scholar 

  105. 105

    Meister, A. et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).

    CAS  Google Scholar 

  106. 106

    Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

    CAS  Google Scholar 

  107. 107

    Chen, H.-A., Lin, H.-Y. & Lin, H.-N. Localized surface plasmon resonance in lithographically fabricated single gold nanowires. J. Phys. Chem. C 114, 10359–10364 (2010).

    CAS  Google Scholar 

  108. 108

    Shim, W. et al. Plow and ridge nanofabrication. Small 9, 3058–3062 (2013).

    CAS  Google Scholar 

  109. 109

    Ngunjiri, J. & Garno, J. C. AFM-based lithography for nanoscale protein assays. Anal. Chem. 80, 1361–1369 (2008).

    CAS  Google Scholar 

  110. 110

    Taha, H. et al. Protein printing with an atomic force sensing nanofountainpen. Appl. Phys. Lett. 83, 1041–1043 (2003).

    CAS  Google Scholar 

  111. 111

    Bellido, E., de Miguel, R., Ruiz-Molina, D., Lostao, A. & Maspoch, D. Controlling the number of proteins with dip-pen nanolithography. Adv. Mater. 22, 352–355 (2010).

    CAS  Google Scholar 

  112. 112

    Lee, W.-K., Whitman, L. J., Lee, J., King, W. P. & Sheehan, P. E. The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. Soft Matter 4, 1844–1847 (2008).

    CAS  Google Scholar 

  113. 113

    Lee, W.-K. et al. Chemically isolated graphene nanoribbons reversibly formed in fluorographene using polymer nanowire masks. Nano Lett. 11, 5461–5464 (2011).

    CAS  Google Scholar 

  114. 114

    Ando, T., Uchihashi, T. & Kodera, N. High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393–414 (2013).

    CAS  Google Scholar 

  115. 115

    Mirkin, C. A. The power of the pen: Development of massively parallel dip-pen nanolithography. ACS Nano 1, 79–83 (2007).

    CAS  Google Scholar 

  116. 116

    Eichelsdoerfer, D. J. Large-area molecular patterning with polymer pen lithography. Nature Protoc. 8, 2548–2560 (2013).

    CAS  Google Scholar 

  117. 117

    Liao, X. et al. Desktop nanofabrication with massively multiplexed beam pen lithography. Nature Commun. 4, 2103 (2013).

    Google Scholar 

  118. 118

    Koelmans, W. et al. Parallel optical readout of cantilever arrays in dynamic mode. Nanotechnology 21, 395503 (2010).

    CAS  Google Scholar 

  119. 119

    Michels, T. & Rangelow, I. W. Review on scanning probe micromachining and its applications within nanoscience. Microelectron. Eng. http://dx.doi.org/10.1016/j.mee.2014.02.011 (2014).

  120. 120

    Pantazi, A. et al. Probe-based ultrahigh-density storage technology. IBM J. Res. Dev. 52, 493–511 (2010).

    Google Scholar 

  121. 121

    Cavallini, M. et al. Regenerable resistive switching in silicon oxide based nanojunctions. Adv. Mater. 24, 1197–1201 (2012).

    CAS  Google Scholar 

  122. 122

    Zeira, A., Chowdhury, D., Maoz, R. & Sagiv, J. Contact electrochemical replication of hydrophilic-hydrophobic monolayer patters. ACS Nano 2, 2554–2568 (2008).

    CAS  Google Scholar 

  123. 123

    Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64–67 (2007).

    CAS  Google Scholar 

  124. 124

    Herruzo, E. T., Perrino, A. P. & Garcia, R. Fast nanomechanical spectroscopy of soft matter. Nature Commun. 5, 3126 (2014).

    Google Scholar 

  125. 125

    Rice, R. H., Mokarian-Tabari, P., King, W. P. & Szoszkiewicz, R. Local thermomechanical analysis of a microphase-separated thin lamellar PS-b-PEO film. Langmuir 28, 13503–13511 (2012).

    CAS  Google Scholar 

  126. 126

    Holzner, F. et al. Thermal probe nanolithography: In-situ inspection, high-speed, high-resolution, 3D. Proc. SPIE 8886, 888605 (2013).

    Google Scholar 

Download references

Acknowledgements

Financial support from the European Research Council AdG no. 340177 (R.G.) and StG no. 307079 (A.W.K.), the European Commission FP7-ICT-2011 no. 318804 (R.G. and A.W.K.), the Swiss National Science Foundation SNSF no. 200020-144464 (A.W.K.), the Ministerio de Economía y Competitividad MAT2013-44858-R (R.G.), the National Science Foundation CMMI-1100290 (E.R.), the MRSEC program DMR-0820382 (E.R.) and the Office of Basic Energy Sciences of the Department of Energy DE-SC0002245 (E.R.) are acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elisa Riedo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia, R., Knoll, A. & Riedo, E. Advanced scanning probe lithography. Nature Nanotech 9, 577–587 (2014). https://doi.org/10.1038/nnano.2014.157

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research