A carbon nanotube–polymer composite for T-cell therapy


A Corrigendum to this article was published on 03 September 2014

This article has been updated (view changelog)


Clinical translation of cell therapies requires strategies that can manufacture cells efficiently and economically. One promising way to reproducibly expand T cells for cancer therapy is by attaching the stimuli for T cells onto artificial substrates with high surface area. Here, we show that a carbon nanotube–polymer composite can act as an artificial antigen-presenting cell to efficiently expand the number of T cells isolated from mice. We attach antigens onto bundled carbon nanotubes and combined this complex with polymer nanoparticles containing magnetite and the T-cell growth factor interleukin-2 (IL-2). The number of T cells obtained was comparable to clinical standards using a thousand-fold less soluble IL-2. T cells obtained from this expansion were able to delay tumour growth in a murine model for melanoma. Our results show that this composite is a useful platform for generating large numbers of cytotoxic T cells for cancer immunotherapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of CNPs.
Figure 2: Characterization of CNPs.
Figure 3: CNPs enhance the long-term expansion of CD8+ T cells.
Figure 4: Effect of CNPs on T-cell phenotype and cytolytic activity.
Figure 5: Adoptive immunotherapy with CNP-expanded T cells delays the growth of tumours in a murine melanoma model.
Figure 6: Expansion of human T cells using CNPs.

Change history

  • 14 August 2014

    In the version of this Article previously published, the name of the co-author Kevan C. Herold was spelt incorrectly. This has now been corrected in the online versions of the Article.


  1. 1

    Waldmann, T. A. Immunotherapy: past, present and future. Nature Med. 9, 269–277 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer 3, 666–675 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Zemon, H. An artificial solution for adoptive immunotherapy. Trends Biotechnol. 21, 418–420 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Science Transl. Med. 5, 177ra38 (2013).

    Article  Google Scholar 

  5. 5

    Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  Google Scholar 

  6. 6

    Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Murphy, K., Travers, P. & Walport, M. Janeway's Immunobiology (Garland Science, 2008).

    Google Scholar 

  8. 8

    Kim, J. V., Latouche, J.-B., Rivière, I. & Sadelain, M. The ABCs of artificial antigen presentation. Nature Biotechnol. 22, 403–410 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Steenblock, E. R., Wrzesinski, S. H., Flavell, R. A. & Fahmy, T. M. Antigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapy. Expert Opin. Biol. Ther. 9, 451–464 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Kropshofer, H. et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nature Immunol. 3, 61–68 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Fooksman, D. R., Grönvall, G. K., Tang, Q. & Edidin, M. Clustering class I MHC modulates sensitivity of T cell recognition. J. Immunol. 176, 6673–6680 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Andersen, P. S., Menné, C., Mariuzza, R. A., Geisler, C. & Karjalainen, K. A response calculus for immobilized T cell receptor ligands. J. Biol. Chem. 276, 49125–49132 (2001).

    CAS  Article  Google Scholar 

  13. 13

    González, P. A. et al. T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc. Natl Acad. Sci. USA 102, 4824–4829 (2005).

    Article  Google Scholar 

  14. 14

    Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Cemerski, S. et al. The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse. Immunity 26, 345–355 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Li, Q.-J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunol. 5, 791–799 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Oelke, M. et al. Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nature Med. 9, 619–624 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Prakken, B. et al. Artificial antigen-presenting cells as a tool to exploit the immune 'synapse'. Nature Med. 6, 1406–1410 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nature Med. 4, 594–600 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Steenblock, E. R. & Fahmy, T. M. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol. Ther. 16, 765–772 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Oosten, L. E. M. et al. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. Blood 104, 224–226 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Sabatos, C. A. et al. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 29, 238–248 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Huse, M., Quann, E. J. & Davis, M. M. Shouts, whispers and the kiss of death: directional secretion in T cells. Nature Immunol. 9, 1105–1111 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Ye, Q. et al. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J. Transl. Med. 9, 131 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Fadel, T. R. & Fahmy, T. M. Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends Biotechnol. 32, 198–209 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Zanello, L. P., Zhao, B., Hu, H. & Haddon, R. C. Bone cell proliferation on carbon nanotubes. Nano Lett. 6, 562–567 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Nayak, T. R. et al. Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4, 7717–7725 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Steenblock, E. R., Fadel, T., Labowsky, M., Pober, J. S. & Fahmy, T. M. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J. Biol. Chem. 286, 34883–34892 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Chen, Y. et al. Low-defect, purified, narrowly (n,m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. ACS Nano 1, 327–336 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Fadel, T. R. et al. Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett. 8, 2070–2076 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Fadel, T. R. et al. Adsorption of multimeric T cell antigens on carbon nanotubes: effect on protein structure and antigen-specific T cell stimulation. Small 9, 666–672 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Fadel, T. R. et al. Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir 26, 5645–5654 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Park, J. et al. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J. Control. Rel. 156, 109–115 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Fahmy, T. M., Samstein, R. M., Harness, C. C. & Mark Saltzman, W. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26, 5727–5736 (2005).

    CAS  Article  Google Scholar 

  38. 38

    Ragheb, R. R. T. et al. Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med. 70, 1748–1760 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Cheng, L. E., Ohlén, C., Nelson, B. H. & Greenberg, P. D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl Acad. Sci. USA 99, 3001–3006 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Labowsky, M. & Fahmy, T. M. Diffusive transfer between two intensely interacting cells with limited surface kinetics. Chem. Eng. Sci. 74, 114–123 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Janas, M. L., Groves, P., Kienzle, N. & Kelso, A. IL-2 regulates perforin and granzyme gene expression in CD8+ T cells independently of its effects on survival and proliferation. J. Immunol. 175, 8003–8010 (2005).

    CAS  Article  Google Scholar 

  42. 42

    Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Suter, D. M. & Krause, K-H. Neural commitment of embryonic stem cells: molecules, pathways and potential for cell therapy. J. Pathol. 215, 355–368 (2008).

    CAS  Article  Google Scholar 

  45. 45

    McIntosh, K. et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24, 1246–1253 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by a National Science Foundation Career Award (0747577) to T.M.F. and in part by a National Institutes of Health Autoimmunity Center of Excellence Pilot Award (U19 AI056363, to T.M.F. and K.H.) and a Yale Specialized Programs of Research Excellence (SPORE) Investigator Pilot Award (to T.M.F.) and in part by the Yale SPORE in Skin Cancer (grant no. 1 P50 CA121974). The authors thank J. Alderman and R. Flavell for helpful critique, and M. Sznol, R. Tigelaar and M. Bosenberg (Yale Cancer Center), as well as P. De Sousa (University of Edinburgh), for technical comments regarding adoptive therapy. The authors also thank P. Van Tassel for technical advice regarding CNT preparation.

Author information




T.R.F. and T.M.F. designed all of the experiments for this study. R.R synthesized the magnetite and fabricated the polymer nanoparticles. N.L. synthesized the carbon nanotubes. S.J. synthesized the biotinylated MHC-I. T.R.F., L.D.P. and G.L.H. characterized the carbon nanotubes. T.R.F. and R.R. characterized the particles and the CNP system. R.R. characterized the magnetic properties of the PLGA nanoparticles and CNPs. T.R.F. performed inverted, fluorescence and FRET imaging. T.R.F. performed in vitro characterization experiments and FACS analyses. T.R.F., F.S. and E.H. performed the studies on T-cell cytotoxicity. T.R.F., F.S. and D.K. characterized the tumour-infiltrating lymphocytes. F.S., N.V., and J.G. performed the human T cell expansion experiments. T.R.F. and D.K. performed the in vivo experiments. T.M.F. conceived the formulations. T.R.F. wrote the manuscript. T.M.F., R.R., D.K., F.S., E.H., L.D.P., and K.C.H. edited the manuscript.

Corresponding author

Correspondence to Tarek M. Fahmy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 9764 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fadel, T., Sharp, F., Vudattu, N. et al. A carbon nanotube–polymer composite for T-cell therapy. Nature Nanotech 9, 639–647 (2014). https://doi.org/10.1038/nnano.2014.154

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research