Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot

Abstract

Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment1. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet2, and the spin state is read out in the single-shot mode3. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots4,5, whereas gate operation times are comparable to those reported in GaAs6,7,8. The spin echo decay time is 40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Device schematic and measurement cycle.
Figure 2: Qubit spectroscopy.
Figure 3: Universal qubit control.
Figure 4: Qubit coherence.

References

  1. Eckstein, J. N. & Levy, J. Materials issues for quantum computation. Mater. Res. Soc. Bull. 38, 783–789 (2013).

    Article  Google Scholar 

  2. Tokura, Y., Van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    Article  Google Scholar 

  3. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    CAS  Article  Google Scholar 

  4. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Mater. 12, 494–504 (2013).

    CAS  Article  Google Scholar 

  5. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Article  Google Scholar 

  6. Obata, T. et al. Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet. Phys. Rev. B 81, 085317 (2010).

    Article  Google Scholar 

  7. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    CAS  Article  Google Scholar 

  8. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    CAS  Article  Google Scholar 

  9. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).

    CAS  Article  Google Scholar 

  10. Nowack, K. C. et al. Single-shot correlations and two-qubit gate of solid-state spins. Science 333, 1269–1272 (2011).

    CAS  Article  Google Scholar 

  11. Medford, J. et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nature Nanotech. 8, 654–659 (2013).

    CAS  Article  Google Scholar 

  12. Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet–triplet qubits. Science 336, 202–205 (2012).

    CAS  Article  Google Scholar 

  13. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. & Yacoby, A. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

    Article  Google Scholar 

  14. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Preprint at http://arxiv.org/abs/1402.7140v1 (2014).

  15. Laird, E. A., Pei, F. & Kouwenhoven, L. P. A valley–spin qubit in a carbon nanotube. Nature Nanotech. 8, 565–568 (2013).

    CAS  Article  Google Scholar 

  16. Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys. 5, 321–326 (2009).

    CAS  Article  Google Scholar 

  17. Higginbotham, A. P. et al. Hole spin coherence in a Ge–Si heterostructure nanowire. Nano Lett. 14, 3582 (2014).

    CAS  Article  Google Scholar 

  18. Yang, C. H. et al. Spin–valley lifetimes in a silicon quantum dot with tunable valley splitting. Nature Commun. 4, 2069 (2013).

    CAS  Article  Google Scholar 

  19. Hao, X., Ruskov, R., Xiao, M., Tahan, C. & Jiang, H. Electron spin resonance and spin–valley physics in a silicon double quantum dot. Nature Commun. 5, 3860 (2014).

    CAS  Article  Google Scholar 

  20. Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013).

    CAS  Article  Google Scholar 

  21. Prance, J. R. et al. Single-shot measurement of triplet–singlet relaxation in a Si/SiGe double quantum dot. Phys. Rev. Lett. 108, 046808 (2012).

    CAS  Article  Google Scholar 

  22. Maune, B. M. et al. Coherent singlet–triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012).

    CAS  Article  Google Scholar 

  23. Assali, L. V. C. et al. Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011).

    Article  Google Scholar 

  24. Wu, X. et al. Two-axis control of a singlet–triplet qubit with an integrated micromagnet. Preprint at http://arxiv.org/abs/1403.0019v1 (2014).

  25. Laird, E. A. et al. A new mechanism of electric dipole spin resonance: hyperfine coupling in quantum dots. Semicond. Sci. Technol. 24, 064004 (2009).

    Article  Google Scholar 

  26. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    CAS  Article  Google Scholar 

  27. Cywiński, Ł., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  28. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    Article  Google Scholar 

  29. Xiang, Z. L., Ashhab, S., You, J. Q. & Nori, F. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with L. Schreiber, J. Prance, G. de Lange, A. Morello, W. Coish, F. Beaudoin and our spin qubit teams, comments by L. DiCarlo and R. Hanson, and experimental assistance from P. Barthelemy, M. Tiggelman and R. Schouten. This work was supported in part by the Army Research Office (ARO) (W911NF-12-0607), the Foundation for Fundamental Research on Matter (FOM) and the European Research Council (ERC). Development and maintenance of the growth facilities used for fabricating samples was supported by the Department of Energy (DOE) (DE-FG02-03ER46028). E.K. was supported by a fellowship from the Nakajima Foundation. This research utilized NSF-supported shared facilities at the University of Wisconsin–Madison.

Author information

Authors and Affiliations

Authors

Contributions

E.K. and P.S performed the experiment with help from F.R.B., and analysed the data. D.R.W. fabricated the sample. D.E.S and M.G.L. grew the heterostructure. E.K., P.S., M.F., S.N.C., M.A.E. and L.M.K.V. carried out the interpretation of the data, and M.F and S.N.C. the theoretical analysis. E.K., P.S. and L.M.K.V. wrote the manuscript and all authors commented on the manuscript. M.A.E. and L.M.K.V. initiated the project, and supervised the work with S.N.C.

Corresponding author

Correspondence to L. M. K. Vandersypen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3490 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawakami, E., Scarlino, P., Ward, D. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nature Nanotech 9, 666–670 (2014). https://doi.org/10.1038/nnano.2014.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.153

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research