Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Remote control of myosin and kinesin motors using light-activated gearshifting

Abstract

Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells1,2. Engineered modifications of motor function provide direct tests of protein structure–function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems3,4. Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears—speed up, slow down or switch directions—when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular design, proposed switching mechanism and in vitro performance of MyLOV constructs.
Figure 2: Dynamic control of speed in MyLOVChar.
Figure 3: Design, structure and in vitro performance of engineered kinesin-14 motors.

Similar content being viewed by others

References

  1. Sellers, J. R. Myosins: a diverse superfamily. Biochim. Biophys. Acta 1496, 3–22 (2000).

    Article  CAS  Google Scholar 

  2. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  3. Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotech. 3, 465–475 (2008).

    Article  CAS  Google Scholar 

  4. Goodman, B. S., Derr, N. D. & Reck-Peterson, S. L. Engineered, harnessed, and hijacked: synthetic uses for cytoskeletal systems. Trends Cell Biol. 22, 644–652 (2012).

    Article  CAS  Google Scholar 

  5. Korten, T., Birnbaum, W., Kuckling, D. & Diez, S. Selective control of gliding microtubule populations. Nano Lett. 12, 348–353 (2012).

    Article  CAS  Google Scholar 

  6. Cochran, J. C., Zhao, Y. C., Wilcox, D. E. & Kull, F. J. A metal switch for controlling the activity of molecular motor proteins. Nature Struct. Mol. Biol. 19, 122–127 (2012).

    Article  CAS  Google Scholar 

  7. Chen, L., Nakamura, M., Schindler, T. D., Parker, D. & Bryant, Z. Engineering controllable bidirectional molecular motors based on myosin. Nature Nanotech. 7, 252–256 (2012).

    Article  CAS  Google Scholar 

  8. Marriott, G. & Heidecker, M. Light-directed generation of the actin-activated ATPase activity of caged heavy meromyosin. Biochemistry 35, 3170–3174 (1996).

    Article  CAS  Google Scholar 

  9. Goguen, B. N., Hoffman, B. D., Sellers, J. R., Schwartz, M. A. & Imperiali, B. Light-triggered myosin activation for probing dynamic cellular processes. Angew. Chem. Int. Ed. 50, 5667–5670 (2011).

    Article  CAS  Google Scholar 

  10. Yamada, M. D., Nakajima, Y., Maeda, H. & Maruta, S. Photocontrol of kinesin ATPase activity using an azobenzene derivative. J. Biochem. 142, 691–698 (2007).

    Article  CAS  Google Scholar 

  11. Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article  CAS  Google Scholar 

  12. Kamei, T., Fukaminato, T. & Tamaoki, N. A photochromic ATP analogue driving a motor protein with reversible light-controlled motility: controlling velocity and binding manner of a kinesin-microtubule system in an in vitro motility assay. Chem. Commun. 48, 7625–7627 (2012).

    Article  CAS  Google Scholar 

  13. Uyeda, T. Q., Abramson, P. D. & Spudich, J. A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl Acad. Sci. USA 93, 4459–4464 (1996).

    Article  CAS  Google Scholar 

  14. Tsiavaliaris, G., Fujita-Becker, S. & Manstein, D. J. Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–561 (2004).

    Article  CAS  Google Scholar 

  15. Liao, J-C., Elting, M. W., Delp, S. L., Spudich, J. A. & Bryant, Z. Engineered myosin VI motors reveal minimal structural determinants of directionality and processivity. J. Mol. Biol. 392, 862–867 (2009).

    Article  CAS  Google Scholar 

  16. Schindler, T. D., Chen, L., Lebel, P., Nakamura, M. & Bryant, Z. Engineering myosins for long-range transport on actin filaments. Nature Nanotech. 9, 33–38 (2014).

    Article  CAS  Google Scholar 

  17. Harper, S. M., Neil, L. C. & Gardner, K. H. Structural basis of a phototropin light switch. Science 301, 1541–1544 (2003).

    Article  CAS  Google Scholar 

  18. Lee, J. et al. Surface sites for engineering allosteric control in proteins. Science 322, 438–442 (2008).

    Article  CAS  Google Scholar 

  19. Strickland, D., Moffat, K. & Sosnick, T. R. Light-activated DNA binding in a designed allosteric protein. Proc. Natl Acad. Sci. USA 105, 10709–10714 (2008).

    Article  CAS  Google Scholar 

  20. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  21. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nature Methods 9, 379–384 (2012).

    Article  CAS  Google Scholar 

  22. Ménétrey, J., Llinas, P., Mukherjea, M., Sweeney, H. L. & Houdusse, A. The structural basis for the large powerstroke of myosin VI. Cell 131, 300–308 (2007).

    Article  Google Scholar 

  23. Anson, M., Geeves, M. A., Kurzawa, S. E. & Manstein, D. J. Myosin motors with artificial lever arms. EMBO J. 15, 6069–6074 (1996).

    Article  CAS  Google Scholar 

  24. Ito, K. et al. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity. Biochem. Biophys. Res. Commun. 312, 958–964 (2003).

    Article  CAS  Google Scholar 

  25. Toettcher, J. E., Voigt, C. A., Weiner, O. D. & Lim, W. A. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nature Methods 8, 35–38 (2011).

    Article  CAS  Google Scholar 

  26. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  27. Tominaga, M. et al. Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J. 22, 1263–1272 (2003).

    Article  CAS  Google Scholar 

  28. Bryant, Z., Altman, D. & Spudich, J. A. The power stroke of myosin VI and the basis of reverse directionality. Proc. Natl Acad. Sci. USA 104, 772–777 (2007).

    Article  CAS  Google Scholar 

  29. Higashi-Fujime, S. et al. The fastest actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett. 375, 151–154 (1995).

    Article  CAS  Google Scholar 

  30. Salomon, M., Christie, J. M., Knieb, E., Lempert, U. & Briggs, W. R. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39, 9401–9410 (2000).

    Article  CAS  Google Scholar 

  31. Alexandre, M. T. A., Arents, J. C., van Grondelle, R., Hellingwerf, K. J. & Kennis, J. T. M. A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochemistry 46, 3129–3137 (2007).

    Article  CAS  Google Scholar 

  32. Yun, M. et al. Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd. EMBO J. 22, 5382–5389 (2003).

    Article  CAS  Google Scholar 

  33. Endres, N. F., Yoshioka, C., Milligan, R. A. & Vale, R. D. A lever-arm rotation drives motility of the minus-end-directed kinesin Ncd. Nature 439, 875–878 (2006).

    Article  CAS  Google Scholar 

  34. Wendt, T. G. et al. Microscopic evidence for a minus-end-directed power stroke in the kinesin motor Ncd. EMBO J. 21, 5969–5978 (2002).

    Article  CAS  Google Scholar 

  35. Endow, S. A. & Higuchi, H. A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406, 913–916 (2000).

    Article  CAS  Google Scholar 

  36. Schaller, V., Weber, C. A., Hammerich, B., Frey, E. & Bausch, A. R. Frozen steady states in active systems. Proc. Natl Acad. Sci. USA 108, 19183–19188 (2011).

    Article  CAS  Google Scholar 

  37. Mansson, A. Translational actomyosin research: fundamental insights and applications hand in hand. J. Muscle Res. Cell Motil. 33, 219–233 (2012).

    Article  CAS  Google Scholar 

  38. Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J. Cell Sci. 14(Suppl.), 125–127 (1991).

    Article  CAS  Google Scholar 

  39. Heuston, E., Bronner, C. E., Kull, F. J. & Endow, S. A. A kinesin motor in a force-producing conformation. BMC Struct. Biol. 10, 19 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J-C. Liao, T. Omabegho, D.J. Cipriano, P.V. Ruijgrok and M.W. Elting for technical assistance, S. Sutton and H.M. Warrick for providing purified actin, and M.J. Footer for providing a gelsolin expression plasmid. This work was supported by a Pew Scholars Award, National Institutes of Health grants DP2 OD004690 (to Z.B.) and P01GM051487 (to E.N.), an AHA Predoctoral Fellowship (to M.N.), a National Science Foundation Graduate Research Fellowship (to L.C.) and a Stanford Graduate Fellowship (to T.D.S.). E.N. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Contributions

M.N. designed myosin constructs and performed myosin experiments. T.D.S. assisted with myosin research. L.C. and M.N. designed and assayed Ncd constructs, analysed all motility data and provided samples and assistance for electron microscopy. S.C.H. performed cryoelectron microscopy and obtained three-dimensional reconstructions. E.N. supervised cryoelectron microscopy research. Z.B. conceived and supervised the overall project. M.N., Z.B., L.C. and S.C.H. contributed to writing the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zev Bryant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 13654 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 7592 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 4531 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 1750 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 1734 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 737 kb)

Supplementary Movie 6

Supplementary Movie 6 (MOV 301 kb)

Supplementary Movie 7

Supplementary Movie 7 (MOV 208 kb)

Supplementary Movie 8

Supplementary Movie 8 (MOV 11436 kb)

Supplementary Movie 9

Supplementary Movie 9 (MOV 973 kb)

Supplementary Movie 10

Supplementary Movie 10 (MOV 30485 kb)

Supplementary Movie 11

Supplementary Movie 11 (MOV 1464 kb)

Supplementary Movie 12

Supplementary Movie 12 (MOV 1472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, M., Chen, L., Howes, S. et al. Remote control of myosin and kinesin motors using light-activated gearshifting. Nature Nanotech 9, 693–697 (2014). https://doi.org/10.1038/nnano.2014.147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.147

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research