Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters



The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging1,2. In nature, magnetosomes—membrane-bound magnetic nanocrystals with unprecedented magnetic properties—can be biomineralized by magnetotactic bacteria3. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications4,5. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of molecular organization of gene cassettes inserted into the chromosome of R. rubrum in a stepwise manner.
Figure 2: Phenotypes of R. rubrum strains expressing different magnetosome gene clusters and auxiliary genes.
Figure 3: Ultrastructural analysis of R. rubrum_ABG6X and isolated crystals.


  1. Prozorov, T., Bazylinski, D. A., Mallapragada, S. K. & Prozorov, R. Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater. Sci. Eng. R 74, 133–172 (2013).

    Article  Google Scholar 

  2. Baumgartner, J., Bertinetti, L., Widdrat, M., Hirt, A. M. & Faivre, D. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS ONE 8, e57070 (2013).

    Article  CAS  Google Scholar 

  3. Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nature Rev. Microbiol. 2, 217–230 (2004).

    Article  CAS  Google Scholar 

  4. Goldhawk, D. E., Rohani, R., Sengupta, A., Gelman, N. & Prato, F. S. Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 378–388 (2012).

    Article  CAS  Google Scholar 

  5. Murat, D. Magnetosomes: how do they stay in shape? J. Mol. Microbiol. Biotechnol. 23, 81–94 (2013).

    Article  CAS  Google Scholar 

  6. Lohsse, A. et al. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS ONE 6, e25561 (2011).

    Article  CAS  Google Scholar 

  7. Pollithy, A. et al. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 77, 6165–6171 (2011).

    Article  CAS  Google Scholar 

  8. Staniland, S. et al. Controlled cobalt doping of magnetosomes in vivo. Nature Nanotech. 3, 158–162 (2008).

    Article  CAS  Google Scholar 

  9. Jogler, C. & Schüler, D. Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol. 63, 501–521 (2009).

    Article  CAS  Google Scholar 

  10. Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. & Schüler, D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 187, 7176–7184 (2005).

    Article  CAS  Google Scholar 

  11. Raschdorf, O., Müller, F. D., Pósfai, M., Plitzko, J. M. & Schüler, D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol. Microbiol. 89, 872–886 (2013).

    Article  CAS  Google Scholar 

  12. Murat, D., Quinlan, A., Vali, H. & Komeili, A. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc. Natl Acad. Sci. USA 107, 5593–5598 (2010).

    Article  CAS  Google Scholar 

  13. Schübbe, S. et al. Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 72, 5757–5765 (2006).

    Article  Google Scholar 

  14. Fu, J. et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 36, e113 (2008).

    Article  Google Scholar 

  15. Martinez-Garcia, E., Calles, B., Arevalo-Rodriguez, M. & de Lorenzo, V. pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol. 11, 38 (2011).

    Article  CAS  Google Scholar 

  16. Richter, M. et al. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol. 189, 4899–4910 (2007).

    Article  CAS  Google Scholar 

  17. Jogler, C. et al. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl Acad. Sci. USA 108, 1134–1139 (2011).

    Article  CAS  Google Scholar 

  18. Lefèvre, C. T. et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ. Microbiol. 15, 2267–2274 (2013).

    Article  Google Scholar 

  19. Schüler, D. R., Uhl, R. & Bäuerlein, E. A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol. Ecol. 132, 139–145 (1995).

    Article  Google Scholar 

  20. Uebe, R. et al. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82, 818–835 (2011).

    Article  CAS  Google Scholar 

  21. Scheffel, A. et al. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114 (2006).

    Article  CAS  Google Scholar 

  22. Rong, C. et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res. Microbiol. 159, 530–536 (2008).

    Article  CAS  Google Scholar 

  23. Grünberg, K. et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040–1050 (2004).

    Article  Google Scholar 

  24. Lang, C. & Schüler, D. Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl. Environ. Microbiol. 74, 4944–4953 (2008).

    Article  CAS  Google Scholar 

  25. Jogler, C. et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ. Microbiol. 11, 1267–1277 (2009).

    Article  CAS  Google Scholar 

  26. Jogler, C. et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl. Environ. Microbiol. 75, 3972–3979 (2009).

    Article  CAS  Google Scholar 

  27. Nishida, K. & Silver, P. A. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway. PLoS Biol. 10, e1001269 (2012).

    Article  CAS  Google Scholar 

  28. Kim, T., Moore, D. & Fussenegger, M. Genetically programmed superparamagnetic behavior of mammalian cells. J. Biotechnol. 162, 237–245 (2012).

    Article  CAS  Google Scholar 

  29. Murat, D. et al. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85, 684–699 (2012).

    Article  CAS  Google Scholar 

  30. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotech. 5, 602–606 (2010).

    Article  CAS  Google Scholar 

  31. Westmeyer, G. G. & Jasanoff, A. Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magn. Reson. Imaging 25, 1004–1010 (2007).

    Article  Google Scholar 

  32. Sambrook, J. & Russell, D. Molecular Cloning: A Laboratory Manual Vol. 3 (Cold Spring Harbor Laboratory Press, 2001).

    Google Scholar 

  33. Kolinko, I., Jogler, C., Katzmann, E. & Schüler, D. Frequent mutations within the genomic magnetosome island of Magnetospirillum gryphiswaldense are mediated by RecA. J. Bacteriol. 193, 5328–5334 (2011).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Human Frontier Science Foundation (grant RGP0052/2012), the Deutsche Forschungsgemeinschaft (grants SCHU 1080/12-1 and 15-1) and the European Union (Bio2MaN4MRI). The authors thank F. Kiemer for expert help with iron measurements and cultivation experiments.

Author information

Authors and Affiliations



I.K., D.S., Y.Z., Q.T., C.J. and R.M. planned and performed cloning experiments. I.K. and A.L. performed genetic transfers and cultivation experiments. G.W. prepared cryo- and chemically fixed cells. S.B., O.R. and G.W. performed TEM and I.K. analysed the data. J.P. and O.R. performed cryo-electron tomography experiments. E.T. and M.P. took high-resolution TEM micrographs and analysed the data. I.K. and A.L. took fluorescence micrographs and performed phenotypization experiments. I.K. performed western blot experiments and analysed proteomic data. A.B. performed Illumina genome sequencing and I.K. analysed the data. I.K. and D.S. designed the study and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Youming Zhang or Dirk Schüler.

Ethics declarations

Competing interests

I.K. and D.S. (LMU Munich) have filed a patent application on the process described in this work (Production of magnetic nanoparticles in recombinant host cells, EP13193478).

Supplementary information

Supplementary information

Supplementary Information (PDF 2901 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kolinko, I., Lohße, A., Borg, S. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nature Nanotech 9, 193–197 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research