Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phonon waveguides for electromechanical circuits

Abstract

Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors1,2, signal processors3,4 and in the study of macroscopic quantum mechanics5,6,7. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits8,9,10,11,12,13. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide–resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanical membrane-based phonon waveguides.
Figure 2: Temporal and spatial dynamics of phonon propagation.
Figure 3: Phonon group velocities.
Figure 4: Dynamic control of phonons in the waveguide via the cavity.

Similar content being viewed by others

References

  1. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotech. 7, 301–304 (2012).

    Article  CAS  Google Scholar 

  2. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    Article  CAS  Google Scholar 

  3. Loh, O. Y. & Espinosa, H. D. Nanoelectromechanical contact switches. Nature Nanotech. 7, 283–295 (2012).

    Article  CAS  Google Scholar 

  4. Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nature Nanotech. 3, 275–279 (2008).

    Article  CAS  Google Scholar 

  5. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  CAS  Google Scholar 

  6. Teufel, J. D. et al. Sideband cooling micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  CAS  Google Scholar 

  7. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  CAS  Google Scholar 

  8. Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011).

    Article  Google Scholar 

  9. Zhang, M. et al. Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109, 233906 (2012).

    Article  Google Scholar 

  10. Stannigel, K. et al. Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012).

    Article  CAS  Google Scholar 

  11. Massel, F. et al. Multimode circuit optomechanics near the quantum limit. Nature Commun. 3, 987 (2012).

    Article  Google Scholar 

  12. Bagheri, M., Poot, M., Fan, L., Marquardt, F. & Tang, H. Photonic cavity synchronization of nanomechanical oscillators. Phys. Rev. Lett. 111, 213902 (2013).

    Article  Google Scholar 

  13. Matheny, M. H. et al. Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014).

    Article  Google Scholar 

  14. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  Google Scholar 

  15. Schmidt, M., Ludwig, M. & Marquardt, F. Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys. 14, 125005 (2012).

    Article  Google Scholar 

  16. Habraken, S. J. M., Stannigel, K., Lukin, M. D., Zoller, P. & Rabl, P. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys. 14, 115004 (2012).

    Article  Google Scholar 

  17. Benchabane, S., Khelif, A., Rauch, J-Y., Robert, L. & Laude, V. Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601 (2006).

    Article  CAS  Google Scholar 

  18. Laude, V., Robert, L., Daniau, W., Khelif, A. & Ballandras, S. Surface acoustic wave trapping in a periodic array of mechanical resonators. Appl. Phys. Lett. 89, 083515 (2006).

    Article  Google Scholar 

  19. Sun, C-Y., Hsu, J-C. & Wu, T-T. Resonant slow modes in phononic crystal plates with periodic membrane. Appl. Phys. Lett. 97, 031902 (2010).

    Article  Google Scholar 

  20. Mohammadi, S. & Adibi, A. On chip complex signal processing devices using coupled phononic crystal slab resonators and waveguides. AIP Adv. 1, 041903 (2011).

    Article  Google Scholar 

  21. Otsuka, P. H. et al. Broadband evolution of phononic-crystal-waveguide eigenstates in real- and k-spaces. Sci. Rep. 3, 3351 (2013).

    Article  CAS  Google Scholar 

  22. Hatanaka, D., Mahboob, I., Okamoto, H., Onomitsu, K. & Yamaguchi, H. An electromechanical membrane resonator. Appl. Phys. Lett. 101, 063102 (2012).

    Article  Google Scholar 

  23. Hatanaka, D., Mahboob, I., Onomitsu, K. & Yamaguchi, H. A phonon transistor in an electromechanical resonator array. Appl. Phys. Lett. 102, 213102 (2013).

    Article  Google Scholar 

  24. Kittel, C. Introduction to Solid State Physics (Wiley, 2004).

  25. Baba, T. Slow light in photonics crystals. Nature Photon. 2, 465–473 (2008).

    Article  CAS  Google Scholar 

  26. Watanabe, Y. & Sugimoto, N. Flexural wave propagation in a spatially periodic structure of articulated beams. Wave Motion 42, 155–167 (2005).

    Article  Google Scholar 

  27. Karabalin, R. B., Cross, M. C. & Roukes, M. L. Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009).

    Article  Google Scholar 

  28. Westra, H. J. R., Poot, M., van der Zant, H. S. J. & Venstra, W. J. Nonlinear modal interactions in clamped-clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010).

    Article  CAS  Google Scholar 

  29. Gaidarzhy, A., Dorignac, J., Zolfagharkhani, G., Imboden, M. & Mohanty, P. Energy measurement in nonlinearly coupled nanomechanical modes. Appl. Phys. Lett. 98, 264106 (2011).

    Article  Google Scholar 

  30. Mahboob, I., Nishiguchi, K., Okamoto, H. & Yamaguchi, H. Phonon-cavity electromechanics. Nature Phys. 8, 387–392 (2012).

    Article  CAS  Google Scholar 

  31. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  CAS  Google Scholar 

  32. Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon lasing in an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Ishikawa for growing the heterostructure and T. Watanabe for helping with sample preparation. This work was partially supported by JSPS KAKENHI (grant no. 23241046).

Author information

Authors and Affiliations

Authors

Contributions

D.H. conceived the experiment, fabricated the sample, and performed measurements and data analysis. K.O. co-fabricated the GaAs/AlGaAs heterostructure. D.H. and I.M. wrote the paper based on discussions with H.Y. who also planned the project.

Corresponding author

Correspondence to D. Hatanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatanaka, D., Mahboob, I., Onomitsu, K. et al. Phonon waveguides for electromechanical circuits. Nature Nanotech 9, 520–524 (2014). https://doi.org/10.1038/nnano.2014.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing