Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2

Abstract

Materials with very low thermal conductivity are of great interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising for suppressing thermal conductivity through phonon scattering, but challenges remain in producing bulk samples. In crystalline AgSbTe2 we show that a spontaneously forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mapping of the phonon mean free paths provides a novel bottom-up microscopic account of thermal conductivity and also reveals intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe2 leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and suggests a new avenue for the nanoscale engineering of materials to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-crystal phonon data for δ-phase AgSbTe2 at 300 K.
Figure 2: Temperature dependence of phonon properties, showing limited anharmonicity below 300 K.
Figure 3: TEM and neutron diffuse scattering, revealing the nanostructure in δ-phase AgSbTe2.
Figure 4: Mean free paths and lattice thermal conductivity derived from INS data.

References

  1. 1

    Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J-P. & Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Wood, C. Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459–539 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Goldsmid, H. J. Introduction to Thermoelectricity (Springer, 2010).

    Google Scholar 

  5. 5

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Siegrist, T., Merkelbach, P. & Wuttig, M. Phase change materials: challenges on the path to a universal storage device. Annu. Rev. Condens. Matter Phys. 3, 215–237 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Matsunaga, T. et al. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Adv. Funct. Mater. 21, 2232–2239 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Schneider, M. N., Rosenthal, T., Stiewe, C. & Oeckler, O. From phase-change materials to thermoelectrics? Z. Kristallogr. 225, 463–470 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Detemple, R., Wamwangi, D., Wuttig, M. & Bihlmayer, G. Identification of Te alloys with suitable phase change characteristics. Appl. Phys. Lett. 83, 2572–2574 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Hockings, E. F. The thermal conductivity of silver antimony telluride. J. Phys. Chem. Solids 10, 341–342 (1959).

    CAS  Article  Google Scholar 

  11. 11

    Wolfe, R., Wernick, J. H. & Haszko, S. E. Anomalous Hall effect in AgSbTe2 . J. Appl. Phys. 31, 1959–1964 (1960).

    CAS  Article  Google Scholar 

  12. 12

    Morelli, D. T., Jovovic, V. & Heremans, J. P. Intrinsically minimal thermal conductivity in cubic I–V–VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Nielsen, M. D., Ozolins, V. & Heremans, J-P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–578 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Zhang, S., Zhu, T., Yang, S., Yu, C. & Zhao, X. Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates. Acta Mater. 58, 4160–4169 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Jovovic, V. & Heremans, J. P. Measurements of the energy band gap and valence band structure of AgSbTe2 . Phys. Rev. B 77, 245204 (2008).

    Article  Google Scholar 

  16. 16

    Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Skrabek, E. A. & Trimmer, D. S. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 267–275 (CRC, 1995).

    Google Scholar 

  18. 18

    Ye, L-H. et al. First-principles study of the electronic, optical, and lattice vibrational properties of AgSbTe2 . Phys. Rev. B 77, 245203 (2008).

    Article  Google Scholar 

  19. 19

    Lencer, D. et al. A map for phase-change materials. Nature Mater. 7, 972–977 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nature Mater. 10, 614–619 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Delaire, O. et al. Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder. Proc. Natl Acad. Sci. USA 108, 4725–4730 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Pang, J. W. L. et al. Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. Phys. Rev. Lett. 110, 157401 (2013).

    Article  Google Scholar 

  24. 24

    Maier, R. G. Zur Kenntnis des Systems PbTe–AgSbTe2. Zeitschrift für Metallkunde 54, 311–312 (1963).

    CAS  Google Scholar 

  25. 25

    Marin, R-M., Brun, G. & Tedenac, J-C. Phase equilibria in the Sb2Te3–Ag2Te system J. Mater. Sci. 20, 730–735 (1985).

    CAS  Article  Google Scholar 

  26. 26

    Sugar, J. & Medlin, D. Precipitation of Ag2Te in the thermoelectric material AgSbTe2 . J. All. Comp. 478, 75–82 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Geller, S. & Wernick, J. H. Ternary semiconducting compounds with sodium chloride-like structure—AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2 . Acta Crystallogr. 12, 46–54 (1959).

    CAS  Article  Google Scholar 

  28. 28

    Quarez, E. et al. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions. J. Am. Chem. Soc. 127, 9177–9190 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Sharma, P. A., Sugar, J. D. & Medlin, D. L. Influence of nanostructuring and heterogeneous nucleation on the thermoelectric figure of merit in AgSbTe2 . J. Appl. Phys. 107, 113716 (2010).

    Article  Google Scholar 

  30. 30

    Sugar, J. & Medlin, D. Solid-state precipitation of stable and metastable layered compounds in thermoelectric AgSbTe2 . J. Mater. Sci. 46, 1668–1679 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Hoang, K., Mahanti, S. D., Salvador, J. R. & Kanatzidis, M. G. Atomic ordering and gap formation in Ag–Sb-based ternary chalcogenides. Phys. Rev. Lett. 99, 156403 (2007).

    Article  Google Scholar 

  32. 32

    Barabash, S. V., Ozolins, V. & Wolverton, C. First-principles theory of competing order types, phase separation, and phonon spectra in thermoelectric AgPbmSbTem+2 alloys. Phys. Rev. Lett. 101, 155704 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Barabash, S. V. & Ozolins, V. Order, miscibility, and electronic structure of Ag(Bi,Sb)Te2 alloys and (Ag,Bi,Sb)Te2 precipitates in rocksalt matrix: a first-principles study. Phys. Rev. B 81, 075212 (2010).

    Article  Google Scholar 

  34. 34

    Manolikas, C. & Spyridelis, J. Electron microscopic study of polymorphism and defects in AgBiSe2 and AgBiS2 . Mater. Res. Soc. Bull. 12, 907–913 (1977).

    CAS  Article  Google Scholar 

  35. 35

    Abernathy, D. L. et al. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Rev. Sci. Instrum. 83, 015114 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Ehlers, G., Podlesnyak, A. A., Niedziela, J. L., Iverson, E. B. & Sokol, P. E. The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. Rev. Sci. Instrum. 82, 085108 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Peierls, R. E. On the kinetic theory of thermal conduction in crystals. Ann. Phys. (Leipz.) Ser. 5, 1055–1101 (1929).

    Article  Google Scholar 

  38. 38

    Slack, G. & Galginaitis, S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Phys. Rev. 133, 253–268 (1964).

    CAS  Article  Google Scholar 

  39. 39

    Krumhansl, J. A. & Matthew, J. A. D. Scattering of long-wavelength phonons by point imperfections in crystals. Phys. Rev. 140, A1812–A1817 (1965).

    Article  Google Scholar 

  40. 40

    Wolfe, J. P. Imaging Phonons: Acoustic Wave Propagation in Solids 1 (Cambridge Univ. Press, 1998).

    Google Scholar 

  41. 41

    Biswas, K. et al. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chem. 3, 160–166 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Pei, Y., Heinz, N. A., LaLonde, A. & Snyder, G. J. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci. 4, 3640–3645 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Simulations and integration of results (O.D.), as well as synthesis and characterization (A.F.M., M.A.M. and B.C.S) were supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. Neutron scattering (J.M.) and electron microscopy (C.E.C. and Y.S-H.) were supported by the US Department of Energy, Office of Basic Energy Sciences, through the S3TEC Energy Frontier Research Center (DESC0001299). L.H.V. and V.M.K. acknowledge support provided by the Joint Directed Research and Development programme of the UTK Science Alliance. The Oak Ridge National Laboratory's Spallation Neutron Source and High-Flux Isotope Reactor are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Author information

Affiliations

Authors

Contributions

O.D. designed the study. O.D. and J.M. performed and analysed neutron scattering experiments, and wrote the manuscript. A.F.M., M.A.M. and B.C.S. synthesized and characterized the samples. C.E.C and Y.S-H. performed electron microscopy and analysed the results thereof. L.H.V. and V.M.K. performed and analysed ultrasound measurements. O.D. performed first-principles simulations. D.L.A, G.E., T.H., A.H. and W.T. helped with neutron data acquisition.

Corresponding author

Correspondence to O. Delaire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1852 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, J., Delaire, O., May, A. et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nature Nanotech 8, 445–451 (2013). https://doi.org/10.1038/nnano.2013.95

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research