Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gigahertz quantized charge pumping in graphene quantum dots

Abstract

Single-electron pumps are set to revolutionize electrical metrology by enabling the ampere to be redefined in terms of the elementary charge of an electron1. Pumps based on lithographically fixed tunnel barriers in mesoscopic metallic systems2 and normal/superconducting hybrid turnstiles3 can reach very small error rates, but only at megahertz pumping speeds that correspond to small currents of the order of picoamperes. Tunable barrier pumps in semiconductor structures are operated at gigahertz frequencies1,4, but the theoretical treatment of the error rate is more complex and only approximate predictions are available5. Here, we present a monolithic, fixed-barrier single-electron pump made entirely from graphene that performs at frequencies up to several gigahertz. Combined with the record-high accuracy of the quantum Hall effect6 and proximity-induced Josephson junctions7, quantized-current generation brings an all-graphene closure of the quantum metrological triangle within reach8,9. Envisaged applications for graphene charge pumps outside quantum metrology include single-photon generation via electron–hole recombination in electrostatically doped bilayer graphene reservoirs10, single Dirac fermion emission in relativistic electron quantum optics11 and read-out of spin-based graphene qubits in quantum information processing12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pumping mechanism in a graphene double quantum dot.
Figure 2: Gigahertz quantized charge pumping (T = 300 mK).
Figure 3: Frequency dependence of the pumped current (T = 300 mK).
Figure 4: Quantization accuracy at low frequency (T = 1.2 K).

Similar content being viewed by others

References

  1. Giblin, S. P. et al. Towards a quantum representation of the ampere using single electron pumps. Nature Commun. 3, 290 (2012).

    Article  Google Scholar 

  2. Keller, M., Martinis, J., Zimmerman, N. & Steinbach, A. Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 69, 1804–1806 (1996).

    Article  CAS  Google Scholar 

  3. Pekola, J. P. et al. Hybrid single-electron transistor as a source of quantized electric current. Nature Phys. 4, 120–124 (2008).

    Article  CAS  Google Scholar 

  4. Fujiwara, A., Nishiguchi, K. & Ono, Y. Nanoampere charge pump by single-electron ratchet using silicon nanowire metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 92, 042102 (2008).

    Article  Google Scholar 

  5. Kashcheyevs, V. & Kaestner, B. Universal decay cascade model for dynamic quantum dot initialization. Phys. Rev. Lett. 104, 186805 (2010).

    Article  Google Scholar 

  6. Tzalenchuk, A. et al. Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotech. 5, 186–189 (2010).

    Article  CAS  Google Scholar 

  7. Jeong, D. et al. Observation of supercurrent in PbIn–graphene–PbIn Josephson junction. Phys. Rev. B 83, 094503 (2011).

    Article  Google Scholar 

  8. Likharev, K. & Zorin, A. Theory of the bloch-wave oscillations in small Josephson junctions. J. Low Temp. Phys. 59, 347–382 (1985).

    Article  Google Scholar 

  9. Piquemal, F. & Genevès, G. Argument for a direct realization of the quantum metrological triangle. Metrologia 37, 207–211 (2000).

    Article  Google Scholar 

  10. Mueller, T. et al. Efficient narrow-band light emission from a single carbon nanotube p–n diode. Nature Nanotech. 5, 27–31 (2009).

    Article  Google Scholar 

  11. Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054–1057 (2013).

    Article  CAS  Google Scholar 

  12. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  13. Molitor, F. et al. Electronic properties of graphene nanostructures. J. Phys. Condens. Matter 23, 243201 (2011).

    Article  CAS  Google Scholar 

  14. Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Single-electron pump based on charging effects. Europhys. Lett. 17, 249–254 (1992).

    Article  Google Scholar 

  15. Van der Wiel, W. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

    Article  Google Scholar 

  16. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).

    Article  CAS  Google Scholar 

  17. Martinis, J. M., Nahum, M. & Jensen, H. D. Metrological accuracy of the electron pump. Phys. Rev. Lett. 72, 904–907 (1994).

    Article  CAS  Google Scholar 

  18. Jensen, H. D. & Martinis, J. M. Accuracy of the electron pump. Phys. Rev. B 46, 13407 (1992).

    Article  CAS  Google Scholar 

  19. Zimmerman, N., Fujiwara, A., Inokawa, H. & Takahashi, Y. Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 89, 052102 (2006).

    Article  Google Scholar 

  20. Yamahata, G., Tsuchiya, Y., Oda, S., Durrani, Z. & Mizuta, H. Control of electrostatic coupling observed for silicon double quantum dot structures. Jpn. J. Appl. Phys. 47, 4820–4826 (2008).

    Article  CAS  Google Scholar 

  21. Han, M. Y., Ozyilmaz, B. Zhang Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  22. Chiu, K. L. et al. Single-particle probing of edge-state formation in a graphene nanoribbon. Phys. Rev. B 85, 205452 (2012).

    Article  Google Scholar 

  23. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  CAS  Google Scholar 

  24. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  25. Schnez, S. et al. Observation of excited states in a graphene quantum dot. Appl. Phys. Lett. 94, 012107 (2009).

    Article  Google Scholar 

  26. Gasser, U. et al. Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts. Phys. Rev. B 79, 035303 (2009).

    Article  Google Scholar 

  27. Covington, M., Keller, M. W., Kautz, R. L. & Martinis, J. M. Photon-assisted tunneling in electron pumps. Phys. Rev. Lett. 84, 5192–5195 (2000).

    Article  CAS  Google Scholar 

  28. GĂĽttinger, J. et al. Time-resolved charge detection in graphene quantum dots. Phys. Rev. B 83, 165445 (2011).

    Article  Google Scholar 

  29. Lotkhov, S., Bogoslovsky, S., Zorin, A. & Niemeyer, J. Operation of a three-junction single-electron pump with on-chip resistors. Appl. Phys. Lett. 78, 946 (2001).

    Article  CAS  Google Scholar 

  30. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  31. Hohls, F. et al. Semiconductor quantized voltage source. Phys. Rev. Lett. 109, 056802 (2012).

    Article  CAS  Google Scholar 

  32. Rickhaus, P., Weiss, M., Marot, L. & Schönenberger, C. Quantum Hall effect in graphene with superconducting electrodes. Nano Lett. 12, 1942–1945 (2012).

    Article  CAS  Google Scholar 

  33. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  34. Cheianov, V. V., Fal'ko, V. & Altshuler, B. L. The focusing of electron flow and a veselago lens in graphene p–n junctions. Science 315, 1252–1255 (2007).

    Article  CAS  Google Scholar 

  35. Prada, E., San-Jose, P. & Schomerus, H. Quantum pumping in graphene. Phys. Rev. B 80, 245414 (2009).

    Article  Google Scholar 

  36. Liu, J-F. and Chan, K. S. Spin-polarized quantum pumping in bilayer graphene. Nanotechnology 22, 395201 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the European Graphene-based Nanoelectronic Devices project (ICT/FET, Contract No. 215752), an Engineering and Physical Sciences Research Council/National Physical Laboratory (NPL) Joint Postdoctoral Partnership and the NPL Strategic Research Programme.

Author information

Authors and Affiliations

Authors

Contributions

M.R.C. conceived the study jointly with T.J.B.M.J. and C.G.S., designed the devices with K.L.C., implemented the experiment with S.P.G., M.K. and J.D.F., and wrote the manuscript with contributions from S.P.G., T.J.B.M.J. and V.I.F. C.C. developed the device simulations with contributions from M.R.C. K.L.C. fabricated the devices with contributions from M.R.C., J.P.G. and G.A.C.J.

Corresponding author

Correspondence to M. R. Connolly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connolly, M., Chiu, K., Giblin, S. et al. Gigahertz quantized charge pumping in graphene quantum dots. Nature Nanotech 8, 417–420 (2013). https://doi.org/10.1038/nnano.2013.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing