Abstract
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits)1. Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge1,2,3,4. Hole spins in III–V semiconductors have unique properties, such as a strong spin–orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control5,6,7,8 and longer coherence times8,9,10,11,12. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques10,11,12, but the development of hole–spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges13. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks
Nature Communications Open Access 15 August 2023
-
The functions of a reservoir offset voltage applied to physically defined p-channel Si quantum dots
Scientific Reports Open Access 21 June 2022
-
Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits
npj Quantum Information Open Access 01 April 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
Hanson, R., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).
Manaselyan, A. & Chakraborty, T. Enhanced Rashba effect for hole states in a quantum dot. Europhys. Lett. 88, 17003–17007 (2009).
Katsaros, G. et al. Hybrid superconductor–semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nature Nanotech. 5, 458–464 (2010).
Kloeffel, C., Trif, M. & Loss, D. Strong spin–orbit interaction and helical hole states in Ge/Si nanowires. Phys. Rev. B 84, 195314 (2011).
Hu, Y. J., Kuemmeth, F., Lieber, C. M. & Marcus, C. M. Hole spin relaxation in Ge–Si core–shell nanowire qubits. Nature Nanotech. 7, 47–50 (2012).
Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).
Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).
De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).
Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).
Grbic, B. et al. Hole transport in p-type GaAs quantum dots and point contacts. AIP Conf. Proc. 893, 777–778 (2007).
Madelung, O. Semiconductors: Data Handbook 3rd edn (Springer, 2004).
Nilsson, H. A. et al. Giant, level-dependent g factors in InSb nanowire quantum dots. Nano Lett. 9, 3151–3156 (2009).
Nilsson, H. A. et al. InSb nanowire field-effect transistors and quantum-dot devices. IEEE J. Sel. Top. Quant. 17, 907–914 (2011).
Plissard, S. R. et al. From InSb nanowires to nanocubes: looking for the sweet spot. Nano Lett. 12, 1794–1798 (2012).
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).
Nadj-Perge, S. et al. Spectroscopy of spin–orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108, 166801 (2012).
Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotech. 4, 363–367 (2009).
Escott, C. C., Zwanenburg, F. A. & Morello, A. Resonant tunnelling features in quantum dots. Nanotechnology 21, 274018 (2010).
Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).
Rashba, E. I. Theory of electric dipole spin resonance in quantum dots: mean field theory with Gaussian fluctuations and beyond. Phys. Rev. B 78, 195302 (2008).
Bulaev, D. V. & Loss, D. Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett. 98, 097202 (2007).
Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys. 5, 321–326 (2009).
Nadj-Perge, S. et al. Disentangling the effects of spin–orbit and hyperfine interactions on spin blockade. Phys. Rev. B 81, 201305(R) (2010).
Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301(R) (2009).
Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).
Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole–nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).
Csontos, D., Brusheim, P., Zulicke, U. & Xu, H. Q. Spin-3/2 physics of semiconductor hole nanowires: Valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings. Phys. Rev. B 79, 155323 (2009).
Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).
Mao, L., Gong, M., Dumitrescu, E., Tewari, S. & Zhang, C. Hole-doped semiconductor nanowire on top of an s-wave superconductor: a new and experimentally accessible system for Majorana fermions. Phys. Rev. Lett. 108, 177001 (2012).
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Acknowledgements
The authors thank L.M.K. Vandersypen and G. Bauer for helpful discussions and comments. This work has been supported by the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO) and the European Research Council (ERC). V.S.P. acknowledges support from NWO through a VENI grant.
Author information
Authors and Affiliations
Contributions
V.S.P., S.N., S.M.F., J.W.G.B. and I.W. performed the measurements. V.S.P., S.N., S.M.F. and J.W.G.B. analysed the data. V.S.P., S.N. and J.W.G.B. fabricated the devices. S.R.P. and E.P.A.M.B. provided the nanowires. L.P.K. supervised the project. All authors contributed to writing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1049 kb)
Supplementary zip
Supplementary zip (ZIP 8603 kb)
Rights and permissions
About this article
Cite this article
Pribiag, V., Nadj-Perge, S., Frolov, S. et al. Electrical control of single hole spins in nanowire quantum dots. Nature Nanotech 8, 170–174 (2013). https://doi.org/10.1038/nnano.2013.5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2013.5
This article is cited by
-
Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks
Nature Communications (2023)
-
The functions of a reservoir offset voltage applied to physically defined p-channel Si quantum dots
Scientific Reports (2022)
-
Strong and tunable spin–orbit interaction in a single crystalline InSb nanosheet
npj 2D Materials and Applications (2021)
-
Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits
npj Quantum Information (2021)
-
A single-hole spin qubit
Nature Communications (2020)