Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Raman spectroscopy as a versatile tool for studying the properties of graphene

Abstract

Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp2-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrons, phonons and Raman spectrum of graphene.
Figure 2: Raman processes.
Figure 3: Real-space Raman processes.
Figure 4: Dependence of the Raman spectra on number of layers and disorder.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  3. Charlier, J. C., Eklund, P. C., Zhu, J. & Ferrari, A. C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Topics Appl. Phys. 111, 673–709 (2008).

    Article  Google Scholar 

  4. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  5. Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L. & Ferrari, A. C. Production and processing of graphene and 2d crystals. Materials Today 15, 564–589 (December, 2012).

    Article  CAS  Google Scholar 

  6. Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  CAS  Google Scholar 

  7. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  CAS  Google Scholar 

  8. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2009).

    Article  CAS  Google Scholar 

  9. Landsberg, G. S. & Mandelshtam, L. I. Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenshaften 16, 557 (1928).

    Article  CAS  Google Scholar 

  10. Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

    Article  CAS  Google Scholar 

  11. Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

    Article  CAS  Google Scholar 

  12. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  13. Ferrari, A. C. & Robertson, J. (eds) Raman spectroscopy in carbons: from nanotubes to diamond, Theme Issue, Phil. Trans. R. Soc. A 362, 2267–2565 (2004).

    Google Scholar 

  14. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  15. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    Article  CAS  Google Scholar 

  16. Ferrari, A. C. & Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

    Article  CAS  Google Scholar 

  17. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano. Lett. 7, 2711–2717 (2007).

    Article  CAS  Google Scholar 

  18. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  CAS  Google Scholar 

  19. Kalbac, M. et al. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 10, 6055–6063 (2010).

    Article  CAS  Google Scholar 

  20. Chen, C. F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    Article  CAS  Google Scholar 

  21. Casiraghi, C. et al. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

    Article  CAS  Google Scholar 

  22. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  CAS  Google Scholar 

  23. Zhao, W. J., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

    Article  CAS  Google Scholar 

  24. Das, A. et al. Phonon renormalisation in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

    Article  CAS  Google Scholar 

  25. Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    Article  CAS  Google Scholar 

  26. Yan, J. et al. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article  CAS  Google Scholar 

  27. Yan, J. et al. Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008).

    Article  CAS  Google Scholar 

  28. Basko, D. M. Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene. Phys. Rev. B 79, 205428 (2009).

    Article  CAS  Google Scholar 

  29. You, Y., Ni, Z., Yu, T. & Shen, Z. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112 (2008).

    Article  CAS  Google Scholar 

  30. Gupta, A. K., Russin, T. J., Gutiérrez, H. R. & Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 3, 45–52 (2009).

    Article  CAS  Google Scholar 

  31. Casiraghi, C. et al. Raman spectroscopy of graphene edges. Nano Lett. 9, 1433–1441 (2009).

    Article  CAS  Google Scholar 

  32. Cong, C., Yu, T. & Wang, H. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 4, 3175–3180 (2010).

    Article  CAS  Google Scholar 

  33. Ryu, S., Maultzsch, J., Han, M. Y., Kim, P. & Brus, L. E., Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5, 4123–4130 (2011).

    Article  CAS  Google Scholar 

  34. Huang, M., Hugen, Y., Heinz, T. F. & Hone, J. Probing strain induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074–4079 (2010).

    Article  CAS  Google Scholar 

  35. Mohr, M., Maultzsch, J. & Thomsen, C. Splitting of the Raman 2D band of graphene subjected to strain. Phys. Rev. B 82, 201409(R) (2010).

    Article  CAS  Google Scholar 

  36. Yoon, D., Son, Y. W. & Cheong, H. Strain-dependent splitting of double resonance Raman scattering band in graphene. Phys. Rev. Lett. 106, 155502 (2011).

    Article  CAS  Google Scholar 

  37. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  CAS  Google Scholar 

  38. Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

    Article  CAS  Google Scholar 

  39. Proctor J. E. et al. Graphene under hydrostatic pressure. Phys. Rev. B 80, 073408 (2009).

    Article  CAS  Google Scholar 

  40. Huang, M. et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 7304–7308 (2009).

    Article  Google Scholar 

  41. Venezuela, P., Lazzeri, M. & Mauri, F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84, 035433 (2011).

    Article  CAS  Google Scholar 

  42. Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

    Article  CAS  Google Scholar 

  43. Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  CAS  Google Scholar 

  44. Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

    Article  CAS  Google Scholar 

  45. Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  46. Nair, R. R. et al. Fluorographene: mechanically strong and thermally stable two-dimensional wide-gap semiconductor. Small 6, 2877–2884 (2010).

    Article  CAS  Google Scholar 

  47. Ni, Z. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 10, 3868–3872 (2010).

    Article  CAS  Google Scholar 

  48. Chen, J. H., Cullen, W. G., Jang, C., Fuhrer, M. S. & Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2008).

    Article  CAS  Google Scholar 

  49. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  50. Bonini, N., Lazzeri, N., Marzari, N. & Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 99, 176802 (2007).

    Article  CAS  Google Scholar 

  51. Basko, D. M. & Aleiner, I. L. Interplay of Coulomb and electron–phonon interactions in graphene. Phys. Rev. B 77, 041409(R) (2008).

    Article  CAS  Google Scholar 

  52. Basko, D. M. Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities. New J. Phys. 11, 095011 (2009).

    Article  CAS  Google Scholar 

  53. Basko, D. M. Theory of resonant multiphonon Raman scattering in graphene. Phys. Rev. B 78, 125418 (2008).

    Article  CAS  Google Scholar 

  54. Grüneis, A. et al. Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Phys. Rev. B 80, 085423 (2009).

    Article  CAS  Google Scholar 

  55. May, P. et al. Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering. Phys. Rev. B 87, 075402 (2013).

    Article  CAS  Google Scholar 

  56. Lazzeri, M. et al. Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Phys. Rev. B 78, 081406(R) (2008).

    Article  CAS  Google Scholar 

  57. Lazzeri, M & Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006).

    Article  CAS  Google Scholar 

  58. Faugeras, C. et al. Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. Phys. Rev. Lett. 103, 186803 (2009).

    Article  CAS  Google Scholar 

  59. Kossacki, P. et al. Electronic excitations and electron-phonon coupling in bulk graphite through Raman scattering in high magnetic fields. Phys. Rev. B 84, 235138, (2011).

    Article  CAS  Google Scholar 

  60. Faugeras, C. et al. Magneto-Raman scattering of graphene on graphite: Electronic excitations and their coupling to optical phonons. Phys. Rev. Lett. 107, 036807 (2011).

    Article  CAS  Google Scholar 

  61. Kim, Y. et al. Magnetophonon resonance in graphite: High-field Raman measurements and electron-phonon coupling contributions. Phys. Rev. B 121403(R) (2012).

  62. Kim, Y. et al. Filling-factor-dependent magnetophonon resonance with circularly polarized phonons in graphene revealed by high-field magneto-Raman spectroscopy. Preprint at http://arxiv.org/abs/1211.6094 (2012).

  63. Faugeras, C. et al. Effect of a magnetic field on the two-phonon Raman scattering in graphene. Phys. Rev. B 81, 155436 (2010).

    Article  CAS  Google Scholar 

  64. Faugeras, C. et al. Probing the band structure of quadri-layer graphene with magneto-phonon resonance. New J. Phys. 14, 095007 (2012).

    Article  CAS  Google Scholar 

  65. Yan J. et al. Observation of magneto-phonon resonance of Dirac fermions in graphite. Phys. Rev. Lett. 105, 227401 (2010).

    Article  CAS  Google Scholar 

  66. Goerbig, M. O. et al. Filling-factor-dependent magnetophonon resonance in graphene. Phys. Rev. Lett. 99, 087402 (2007).

    Article  CAS  Google Scholar 

  67. Ando, T. Magnetic oscillation of optical phonon in graphene. J. Phys. Soc. Jpn 76, 024712 (2007).

    Article  CAS  Google Scholar 

  68. Tan, P. H. et al. The shear mode of multilayer graphene. Nature Mater. 11, 294–300 (2012).

    Article  CAS  Google Scholar 

  69. Lui, C. et al. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012).

    Article  CAS  Google Scholar 

  70. Lui, C. H. & Heinz. T. F. Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 87, 121404 (2013).

    Article  CAS  Google Scholar 

  71. Sato, K. et al. Raman spectra of out-of-plane phonons in bilayer graphene. Phys. Rev. B 84, 035419 (2011).

    Article  CAS  Google Scholar 

  72. Herziger, F., May, F. & Maultzsch, J. Layer number determination in graphene using out-of-plane vibrations. Phys. Rev. B 85, 235447 (2012).

    Article  CAS  Google Scholar 

  73. Maultzsch, J., Reich, S. & Thomsen, C. Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Phys. Rev. B 70, 155403 (2004).

    Article  CAS  Google Scholar 

  74. Yoon, D. et al. Interference effect on Raman spectrum of graphene on SiO2/Si. Phys. Rev. B 80, 125422 (2009).

    Article  CAS  Google Scholar 

  75. Wang, Y. Y. et al. Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 92, 043121 (2008).

    Article  CAS  Google Scholar 

  76. Schedin, F. et al. Surface enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).

    Article  CAS  Google Scholar 

  77. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    Article  CAS  Google Scholar 

  78. Jorio, A., Dresselhaus, M. S., Saito, R. & Dresselhaus, G. Raman Spectroscopy in Graphene Related Systems (Wiley, 2011).

    Book  Google Scholar 

  79. Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A. & Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011).

    Article  CAS  Google Scholar 

  80. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  CAS  Google Scholar 

  81. Nemanich, R. J., Lucovsky, G. & Solin, S. A. Infrared active optical vibrations of graphite. Solid State Comm. 23, 117–120 (1977).

    Article  CAS  Google Scholar 

  82. Reich, S. & Thomsen, C. Raman spectroscopy of graphite. Phil. Trans. R. Soc. A 362, 2271–2288 (2004).

    Article  CAS  Google Scholar 

  83. Mani, K. K. & Ramani, R. Lattice dynamics of graphite. Phys. Stat. Sol. B 61, 659–668 (1974).

    Article  CAS  Google Scholar 

  84. Maultzsch, J., Reich, S., Thomsen, C., Requardt, H. & Ordejón, P. Phonon dispersion in graphite. Phys. Rev. Lett. 92, 075501 (2004).

    Article  CAS  Google Scholar 

  85. Thomsen, C. & Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000).

    Article  CAS  Google Scholar 

  86. Baranov, A. V. et al. Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon. Opt. Spectroscopy 62, 612–616 (1987).

    Google Scholar 

  87. Pocsik, I., Hundhausen, M., Koos, M & Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non-Cryst. Solids 227–230, 1083–1086 (1998).

    Article  Google Scholar 

  88. Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

    Article  CAS  Google Scholar 

  89. Nemanich, R. J. &. Solin, S. A. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979).

    Article  CAS  Google Scholar 

  90. Tan, P. H., Deng, Y. M. & Zhao, Q. Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Phys. Rev. B 58, 5435–5439 (1998).

    Article  CAS  Google Scholar 

  91. Tan, P. H. et al. Probing the phonon dispersions of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 66, 245410 (2002).

    Article  CAS  Google Scholar 

  92. Tan, P. H., Hu, C. Y., Dong, J., Shen, W. C. & Zhang, B. F. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys Rev B 64, 214301 (2001).

    Article  CAS  Google Scholar 

  93. Kawashima, Y. & Katagiri, G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 52, 10053–10059 (1995).

    Article  CAS  Google Scholar 

  94. Nemanich, R. J., Lucovsky, G. & Solin, S. A. in Proc. Int. Conf. on Lattice Dynamics (ed. Balkanski, M.) 619–621 (Flammarion, 1975).

    Google Scholar 

  95. Zhang, X. et al. Raman spectroscopy of shear and layer breathing modes in Multilayer MoS2 . Phys. Rev. B 87, 115413 (2013).

    Article  CAS  Google Scholar 

  96. Latil, S., Meunier, V. & Henrard, L. Massless fermions in multilayer raphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 76, 201402(R) (2007).

    Article  CAS  Google Scholar 

  97. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1948).

    Article  Google Scholar 

  98. Kashuba, A. & Fal'ko, V. I. Signature of electronic excitations in the Raman spectrum of graphene. Phys. Rev. B 80, 241404 (2009).

    Article  CAS  Google Scholar 

  99. Kashuba, O. & Fal'ko, V. I., Role of electronic excitations in magneto-Raman spectra of graphene. New J. Phys. 14, 105016 (2012).

    Article  CAS  Google Scholar 

  100. Wang, F. et al. Multiphonon Raman scattering from individual single-walled carbon nanotubes. Phys. Rev. Lett. 98, 047402 (2007).

    Article  CAS  Google Scholar 

  101. Rao, R., Tishler, D., Katoch, J. & Ishigami, M. Multiphonon Raman scattering in graphene. Phys. Rev. B 84, 113406 (2011).

    Article  CAS  Google Scholar 

  102. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors (Springer, 2005).

    Book  Google Scholar 

  103. Zeyher, R. Calculation of resonant second-order Raman efficiencies for allowed and forbidden scattering. Phys. Rev. B 9, 4439–4447 (1974).

    Article  CAS  Google Scholar 

  104. Goltsev, A. V., Lang, I. G., Pavlov, S. T. & Bryzhina, M. F. Multiphonon resonance Raman scattering and spatial distribution of electrons and holes. J. Phys. C 16, 4221–4241 (1983).

    Article  CAS  Google Scholar 

  105. Martin, R. M. Resonance Raman scattering near critical points. Phys. Rev. B 10, 2620–2631 (1974).

    Article  CAS  Google Scholar 

  106. Vidano, R. P., Fishbach, D. B., Willis, L. J. & Loehr, T. M. Solid State Commun. 39, 341–344 (1981).

    Article  CAS  Google Scholar 

  107. Mafra, D. L. et al. Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B 76, 233407 (2007).

    Article  CAS  Google Scholar 

  108. Basko, D. M. Effect of anisotropic band curvature on carrier multiplication in graphene. Preprint at http://arXiv.org/abs/1302.5891 (2013).

  109. Golub, L. E., Tarasenko, S. A., Entin, M. V. & Magarill, L. I. Valley separation in graphene by polarized light. Phys. Rev. B 84, 195408 (2011).

    Article  CAS  Google Scholar 

  110. Mafra, D. L., Moujaes, E. A., Nunes, R. W. & Pimenta, M. A. On the inner double-resonance Raman scattering process in bilayer graphene. Carbon 49, 1511–1515 (2011).

    Article  CAS  Google Scholar 

  111. Cançado, L. G. et al. Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 66, 035415 (2002).

    Article  CAS  Google Scholar 

  112. Cançado, L. G., Jorio, A. & Pimenta, M. A. Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 76, 064304 (2007).

    Article  CAS  Google Scholar 

  113. Yang, L., Deslippe, J., Park, C-H., Cohen, M. L. & Louie, S. G. Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103, 186802 (2009).

    Article  CAS  Google Scholar 

  114. Kravets, V. G. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).

    Article  CAS  Google Scholar 

  115. Cervantes-Sodi, F., Csányi, G., Piscanec, S. & Ferrari, A. C. Edge functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008).

    Article  CAS  Google Scholar 

  116. Nemes-Incze, P., Magda, G., Kamars, K. & Bir, L. P. Crystallographically selective nanopatterning of graphene on SiO2 . Nano Res. 3, 110–116 (2010).

    Article  CAS  Google Scholar 

  117. Girit, Ç. O. et al. Graphene at the edge: Stability and dynamics. Science 323, 1705–1708 (2009).

    Article  CAS  Google Scholar 

  118. Kobayashi, K., Fukui, K., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    Article  CAS  Google Scholar 

  119. Cançado, L. G. et al. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004).

    Article  CAS  Google Scholar 

  120. Sasaki, K. et al. Kohn anomalies in graphene nanoribbons. Phys. Rev. B 80, 155450 (2009).

    Article  CAS  Google Scholar 

  121. Begliarbekov, M., Sasaki, K-I., Sul, O., Yang, E-H. & Strauf, S. Optical control of edge chirality in graphene. Nano Lett. 11, 4874–4878 (2011).

    Article  CAS  Google Scholar 

  122. Malard, L. M. et al. Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76, 201401(R) (2007).

    Article  CAS  Google Scholar 

  123. Cançado, L. G. et al. Geometrical approach for the study of G' band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Phys. Rev B 77, 245408 (2008).

    Article  CAS  Google Scholar 

  124. Lukyanchuk, I. A., Kopelevich, Y. & El Marssi, M. Dirac fermions in graphite: The state of art. Physica B 404, 404–406 (2009).

    Article  CAS  Google Scholar 

  125. Lespade, P. et al. Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22, 375–385 (1984).

    Article  CAS  Google Scholar 

  126. Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

    Article  CAS  Google Scholar 

  127. Kim, K. et al. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).

    Article  CAS  Google Scholar 

  128. Gupta, A. K., Tang, T., Crespi, V. H. & Eklund, P. C. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 82, 241406(R) (2010).

    Article  CAS  Google Scholar 

  129. Carozo, V. et al. Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011).

    Article  CAS  Google Scholar 

  130. Jorio, A. et al. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 66, 115411 (2002).

    Article  CAS  Google Scholar 

  131. Pfeiffer, R. et al. Resonance Raman scattering from phonon overtones in double-wall carbon nanotubes. Phys. Rev. B 71, 155409 (2005).

    Article  CAS  Google Scholar 

  132. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  133. Matthews, M. J., Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S. & Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 59, R6585–R6588 (1999).

    Article  CAS  Google Scholar 

  134. Knight, D. S. & White, W. B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989).

    Article  CAS  Google Scholar 

  135. Beams, R., Cançado, L. G. & Novotny, L. Low temperature Raman study of the electron coherence length near graphene edges. Nano Lett. 11, 1177–1181 (2011).

    Article  CAS  Google Scholar 

  136. Ferrari, A. C. et al. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B 67, 155306 (2003).

    Article  CAS  Google Scholar 

  137. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Soc. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  138. Nemanich, R. J., Solin, S. A. & Martin, R. M. Light-scattering study of boron-nitride microcrystals. Phys. Rev. B 23, 6348–6356 (1981).

    Article  CAS  Google Scholar 

  139. Arenal, R. et al. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006).

    Article  CAS  Google Scholar 

  140. Reich, S. et al. Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev B 71, 205201 (2005).

    Article  CAS  Google Scholar 

  141. Russo, V. et al. Raman spectroscopy of Bi-Te thin films. J. Raman Spectrosc. 39, 205–210 (2008).

    Article  CAS  Google Scholar 

  142. Verble, J. L. & Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 362–365 (1970).

    Article  CAS  Google Scholar 

  143. Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J. & Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  144. Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Lidorikis, S. Piscanec, P. H. Tan, S. Milana, D. Yoon, A. Lombardo, A. Bonetti, C. Casiraghi, F. Bonaccorso, G. Savini, N. Bonini, N. Marzari, T. Kulmala, A. Jorio, M. A. Pimenta, G. Cancado, R. Ruoff, R. A. Nair, K. A. Novoselov, L. Novotny, A. K. Geim, C. Faugeras and M. Potemski for useful discussions. A.C.F acknowledges funding from the Royal Society, the European Research Council Grant NANOPOTS, EU grants RODIN, GENIUS, MEM4WIN and CareRAMM, EPSRC grants EP/K01711X/1, EP/K017144/1, EP/G042357/1, and Nokia Research Centre, Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, A., Basko, D. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotech 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing