Raman spectroscopy as a versatile tool for studying the properties of graphene

Abstract

Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp2-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electrons, phonons and Raman spectrum of graphene.
Figure 2: Raman processes.
Figure 3: Real-space Raman processes.
Figure 4: Dependence of the Raman spectra on number of layers and disorder.

References

  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  2. 2

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

  3. 3

    Charlier, J. C., Eklund, P. C., Zhu, J. & Ferrari, A. C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. Topics Appl. Phys. 111, 673–709 (2008).

  4. 4

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

  5. 5

    Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L. & Ferrari, A. C. Production and processing of graphene and 2d crystals. Materials Today 15, 564–589 (December, 2012).

  6. 6

    Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

  7. 7

    Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

  8. 8

    Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2009).

  9. 9

    Landsberg, G. S. & Mandelshtam, L. I. Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen. Naturwissenshaften 16, 557 (1928).

  10. 10

    Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

  11. 11

    Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

  12. 12

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

  13. 13

    Ferrari, A. C. & Robertson, J. (eds) Raman spectroscopy in carbons: from nanotubes to diamond, Theme Issue, Phil. Trans. R. Soc. A 362, 2267–2565 (2004).

  14. 14

    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm. 143, 47–57 (2007).

  15. 15

    Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

  16. 16

    Ferrari, A. C. & Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

  17. 17

    Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano. Lett. 7, 2711–2717 (2007).

  18. 18

    Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

  19. 19

    Kalbac, M. et al. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 10, 6055–6063 (2010).

  20. 20

    Chen, C. F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

  21. 21

    Casiraghi, C. et al. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108 (2007).

  22. 22

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

  23. 23

    Zhao, W. J., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

  24. 24

    Das, A. et al. Phonon renormalisation in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

  25. 25

    Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

  26. 26

    Yan, J. et al. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

  27. 27

    Yan, J. et al. Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008).

  28. 28

    Basko, D. M. Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene. Phys. Rev. B 79, 205428 (2009).

  29. 29

    You, Y., Ni, Z., Yu, T. & Shen, Z. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 93, 163112 (2008).

  30. 30

    Gupta, A. K., Russin, T. J., Gutiérrez, H. R. & Eklund, P. C. Probing graphene edges via Raman scattering. ACS Nano 3, 45–52 (2009).

  31. 31

    Casiraghi, C. et al. Raman spectroscopy of graphene edges. Nano Lett. 9, 1433–1441 (2009).

  32. 32

    Cong, C., Yu, T. & Wang, H. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 4, 3175–3180 (2010).

  33. 33

    Ryu, S., Maultzsch, J., Han, M. Y., Kim, P. & Brus, L. E., Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5, 4123–4130 (2011).

  34. 34

    Huang, M., Hugen, Y., Heinz, T. F. & Hone, J. Probing strain induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074–4079 (2010).

  35. 35

    Mohr, M., Maultzsch, J. & Thomsen, C. Splitting of the Raman 2D band of graphene subjected to strain. Phys. Rev. B 82, 201409(R) (2010).

  36. 36

    Yoon, D., Son, Y. W. & Cheong, H. Strain-dependent splitting of double resonance Raman scattering band in graphene. Phys. Rev. Lett. 106, 155502 (2011).

  37. 37

    Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

  38. 38

    Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

  39. 39

    Proctor J. E. et al. Graphene under hydrostatic pressure. Phys. Rev. B 80, 073408 (2009).

  40. 40

    Huang, M. et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 7304–7308 (2009).

  41. 41

    Venezuela, P., Lazzeri, M. & Mauri, F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84, 035433 (2011).

  42. 42

    Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

  43. 43

    Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

  44. 44

    Gokus, T. et al. Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963–3968 (2009).

  45. 45

    Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

  46. 46

    Nair, R. R. et al. Fluorographene: mechanically strong and thermally stable two-dimensional wide-gap semiconductor. Small 6, 2877–2884 (2010).

  47. 47

    Ni, Z. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 10, 3868–3872 (2010).

  48. 48

    Chen, J. H., Cullen, W. G., Jang, C., Fuhrer, M. S. & Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2008).

  49. 49

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

  50. 50

    Bonini, N., Lazzeri, N., Marzari, N. & Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 99, 176802 (2007).

  51. 51

    Basko, D. M. & Aleiner, I. L. Interplay of Coulomb and electron–phonon interactions in graphene. Phys. Rev. B 77, 041409(R) (2008).

  52. 52

    Basko, D. M. Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities. New J. Phys. 11, 095011 (2009).

  53. 53

    Basko, D. M. Theory of resonant multiphonon Raman scattering in graphene. Phys. Rev. B 78, 125418 (2008).

  54. 54

    Grüneis, A. et al. Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions. Phys. Rev. B 80, 085423 (2009).

  55. 55

    May, P. et al. Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering. Phys. Rev. B 87, 075402 (2013).

  56. 56

    Lazzeri, M. et al. Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Phys. Rev. B 78, 081406(R) (2008).

  57. 57

    Lazzeri, M & Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006).

  58. 58

    Faugeras, C. et al. Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. Phys. Rev. Lett. 103, 186803 (2009).

  59. 59

    Kossacki, P. et al. Electronic excitations and electron-phonon coupling in bulk graphite through Raman scattering in high magnetic fields. Phys. Rev. B 84, 235138, (2011).

  60. 60

    Faugeras, C. et al. Magneto-Raman scattering of graphene on graphite: Electronic excitations and their coupling to optical phonons. Phys. Rev. Lett. 107, 036807 (2011).

  61. 61

    Kim, Y. et al. Magnetophonon resonance in graphite: High-field Raman measurements and electron-phonon coupling contributions. Phys. Rev. B 121403(R) (2012).

  62. 62

    Kim, Y. et al. Filling-factor-dependent magnetophonon resonance with circularly polarized phonons in graphene revealed by high-field magneto-Raman spectroscopy. Preprint at http://arxiv.org/abs/1211.6094 (2012).

  63. 63

    Faugeras, C. et al. Effect of a magnetic field on the two-phonon Raman scattering in graphene. Phys. Rev. B 81, 155436 (2010).

  64. 64

    Faugeras, C. et al. Probing the band structure of quadri-layer graphene with magneto-phonon resonance. New J. Phys. 14, 095007 (2012).

  65. 65

    Yan J. et al. Observation of magneto-phonon resonance of Dirac fermions in graphite. Phys. Rev. Lett. 105, 227401 (2010).

  66. 66

    Goerbig, M. O. et al. Filling-factor-dependent magnetophonon resonance in graphene. Phys. Rev. Lett. 99, 087402 (2007).

  67. 67

    Ando, T. Magnetic oscillation of optical phonon in graphene. J. Phys. Soc. Jpn 76, 024712 (2007).

  68. 68

    Tan, P. H. et al. The shear mode of multilayer graphene. Nature Mater. 11, 294–300 (2012).

  69. 69

    Lui, C. et al. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012).

  70. 70

    Lui, C. H. & Heinz. T. F. Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 87, 121404 (2013).

  71. 71

    Sato, K. et al. Raman spectra of out-of-plane phonons in bilayer graphene. Phys. Rev. B 84, 035419 (2011).

  72. 72

    Herziger, F., May, F. & Maultzsch, J. Layer number determination in graphene using out-of-plane vibrations. Phys. Rev. B 85, 235447 (2012).

  73. 73

    Maultzsch, J., Reich, S. & Thomsen, C. Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Phys. Rev. B 70, 155403 (2004).

  74. 74

    Yoon, D. et al. Interference effect on Raman spectrum of graphene on SiO2/Si. Phys. Rev. B 80, 125422 (2009).

  75. 75

    Wang, Y. Y. et al. Interference enhancement of Raman signal of graphene. Appl. Phys. Lett. 92, 043121 (2008).

  76. 76

    Schedin, F. et al. Surface enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).

  77. 77

    Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

  78. 78

    Jorio, A., Dresselhaus, M. S., Saito, R. & Dresselhaus, G. Raman Spectroscopy in Graphene Related Systems (Wiley, 2011).

  79. 79

    Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A. & Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011).

  80. 80

    Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

  81. 81

    Nemanich, R. J., Lucovsky, G. & Solin, S. A. Infrared active optical vibrations of graphite. Solid State Comm. 23, 117–120 (1977).

  82. 82

    Reich, S. & Thomsen, C. Raman spectroscopy of graphite. Phil. Trans. R. Soc. A 362, 2271–2288 (2004).

  83. 83

    Mani, K. K. & Ramani, R. Lattice dynamics of graphite. Phys. Stat. Sol. B 61, 659–668 (1974).

  84. 84

    Maultzsch, J., Reich, S., Thomsen, C., Requardt, H. & Ordejón, P. Phonon dispersion in graphite. Phys. Rev. Lett. 92, 075501 (2004).

  85. 85

    Thomsen, C. & Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000).

  86. 86

    Baranov, A. V. et al. Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon. Opt. Spectroscopy 62, 612–616 (1987).

  87. 87

    Pocsik, I., Hundhausen, M., Koos, M & Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non-Cryst. Solids 227–230, 1083–1086 (1998).

  88. 88

    Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

  89. 89

    Nemanich, R. J. &. Solin, S. A. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979).

  90. 90

    Tan, P. H., Deng, Y. M. & Zhao, Q. Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Phys. Rev. B 58, 5435–5439 (1998).

  91. 91

    Tan, P. H. et al. Probing the phonon dispersions of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 66, 245410 (2002).

  92. 92

    Tan, P. H., Hu, C. Y., Dong, J., Shen, W. C. & Zhang, B. F. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys Rev B 64, 214301 (2001).

  93. 93

    Kawashima, Y. & Katagiri, G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 52, 10053–10059 (1995).

  94. 94

    Nemanich, R. J., Lucovsky, G. & Solin, S. A. in Proc. Int. Conf. on Lattice Dynamics (ed. Balkanski, M.) 619–621 (Flammarion, 1975).

  95. 95

    Zhang, X. et al. Raman spectroscopy of shear and layer breathing modes in Multilayer MoS2 . Phys. Rev. B 87, 115413 (2013).

  96. 96

    Latil, S., Meunier, V. & Henrard, L. Massless fermions in multilayer raphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 76, 201402(R) (2007).

  97. 97

    Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1948).

  98. 98

    Kashuba, A. & Fal'ko, V. I. Signature of electronic excitations in the Raman spectrum of graphene. Phys. Rev. B 80, 241404 (2009).

  99. 99

    Kashuba, O. & Fal'ko, V. I., Role of electronic excitations in magneto-Raman spectra of graphene. New J. Phys. 14, 105016 (2012).

  100. 100

    Wang, F. et al. Multiphonon Raman scattering from individual single-walled carbon nanotubes. Phys. Rev. Lett. 98, 047402 (2007).

  101. 101

    Rao, R., Tishler, D., Katoch, J. & Ishigami, M. Multiphonon Raman scattering in graphene. Phys. Rev. B 84, 113406 (2011).

  102. 102

    Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors (Springer, 2005).

  103. 103

    Zeyher, R. Calculation of resonant second-order Raman efficiencies for allowed and forbidden scattering. Phys. Rev. B 9, 4439–4447 (1974).

  104. 104

    Goltsev, A. V., Lang, I. G., Pavlov, S. T. & Bryzhina, M. F. Multiphonon resonance Raman scattering and spatial distribution of electrons and holes. J. Phys. C 16, 4221–4241 (1983).

  105. 105

    Martin, R. M. Resonance Raman scattering near critical points. Phys. Rev. B 10, 2620–2631 (1974).

  106. 106

    Vidano, R. P., Fishbach, D. B., Willis, L. J. & Loehr, T. M. Solid State Commun. 39, 341–344 (1981).

  107. 107

    Mafra, D. L. et al. Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B 76, 233407 (2007).

  108. 108

    Basko, D. M. Effect of anisotropic band curvature on carrier multiplication in graphene. Preprint at http://arXiv.org/abs/1302.5891 (2013).

  109. 109

    Golub, L. E., Tarasenko, S. A., Entin, M. V. & Magarill, L. I. Valley separation in graphene by polarized light. Phys. Rev. B 84, 195408 (2011).

  110. 110

    Mafra, D. L., Moujaes, E. A., Nunes, R. W. & Pimenta, M. A. On the inner double-resonance Raman scattering process in bilayer graphene. Carbon 49, 1511–1515 (2011).

  111. 111

    Cançado, L. G. et al. Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B 66, 035415 (2002).

  112. 112

    Cançado, L. G., Jorio, A. & Pimenta, M. A. Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 76, 064304 (2007).

  113. 113

    Yang, L., Deslippe, J., Park, C-H., Cohen, M. L. & Louie, S. G. Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103, 186802 (2009).

  114. 114

    Kravets, V. G. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).

  115. 115

    Cervantes-Sodi, F., Csányi, G., Piscanec, S. & Ferrari, A. C. Edge functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008).

  116. 116

    Nemes-Incze, P., Magda, G., Kamars, K. & Bir, L. P. Crystallographically selective nanopatterning of graphene on SiO2 . Nano Res. 3, 110–116 (2010).

  117. 117

    Girit, Ç. O. et al. Graphene at the edge: Stability and dynamics. Science 323, 1705–1708 (2009).

  118. 118

    Kobayashi, K., Fukui, K., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

  119. 119

    Cançado, L. G. et al. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004).

  120. 120

    Sasaki, K. et al. Kohn anomalies in graphene nanoribbons. Phys. Rev. B 80, 155450 (2009).

  121. 121

    Begliarbekov, M., Sasaki, K-I., Sul, O., Yang, E-H. & Strauf, S. Optical control of edge chirality in graphene. Nano Lett. 11, 4874–4878 (2011).

  122. 122

    Malard, L. M. et al. Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76, 201401(R) (2007).

  123. 123

    Cançado, L. G. et al. Geometrical approach for the study of G' band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Phys. Rev B 77, 245408 (2008).

  124. 124

    Lukyanchuk, I. A., Kopelevich, Y. & El Marssi, M. Dirac fermions in graphite: The state of art. Physica B 404, 404–406 (2009).

  125. 125

    Lespade, P. et al. Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22, 375–385 (1984).

  126. 126

    Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

  127. 127

    Kim, K. et al. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).

  128. 128

    Gupta, A. K., Tang, T., Crespi, V. H. & Eklund, P. C. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B 82, 241406(R) (2010).

  129. 129

    Carozo, V. et al. Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011).

  130. 130

    Jorio, A. et al. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 66, 115411 (2002).

  131. 131

    Pfeiffer, R. et al. Resonance Raman scattering from phonon overtones in double-wall carbon nanotubes. Phys. Rev. B 71, 155409 (2005).

  132. 132

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

  133. 133

    Matthews, M. J., Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S. & Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 59, R6585–R6588 (1999).

  134. 134

    Knight, D. S. & White, W. B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989).

  135. 135

    Beams, R., Cançado, L. G. & Novotny, L. Low temperature Raman study of the electron coherence length near graphene edges. Nano Lett. 11, 1177–1181 (2011).

  136. 136

    Ferrari, A. C. et al. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B 67, 155306 (2003).

  137. 137

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Soc. USA 102, 10451–10453 (2005).

  138. 138

    Nemanich, R. J., Solin, S. A. & Martin, R. M. Light-scattering study of boron-nitride microcrystals. Phys. Rev. B 23, 6348–6356 (1981).

  139. 139

    Arenal, R. et al. Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006).

  140. 140

    Reich, S. et al. Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev B 71, 205201 (2005).

  141. 141

    Russo, V. et al. Raman spectroscopy of Bi-Te thin films. J. Raman Spectrosc. 39, 205–210 (2008).

  142. 142

    Verble, J. L. & Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 362–365 (1970).

  143. 143

    Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J. & Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

  144. 144

    Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

Download references

Acknowledgements

We thank E. Lidorikis, S. Piscanec, P. H. Tan, S. Milana, D. Yoon, A. Lombardo, A. Bonetti, C. Casiraghi, F. Bonaccorso, G. Savini, N. Bonini, N. Marzari, T. Kulmala, A. Jorio, M. A. Pimenta, G. Cancado, R. Ruoff, R. A. Nair, K. A. Novoselov, L. Novotny, A. K. Geim, C. Faugeras and M. Potemski for useful discussions. A.C.F acknowledges funding from the Royal Society, the European Research Council Grant NANOPOTS, EU grants RODIN, GENIUS, MEM4WIN and CareRAMM, EPSRC grants EP/K01711X/1, EP/K017144/1, EP/G042357/1, and Nokia Research Centre, Cambridge.

Author information

Correspondence to Andrea C. Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 931 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrari, A., Basko, D. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotech 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46

Download citation

Further reading