Fractionalized wave packets from an artificial Tomonaga–Luttinger liquid

Abstract

The model of interacting fermion systems in one dimension known as a Tomonaga–Luttinger liquid (TLL)1,2 provides a simple and exactly solvable theoretical framework that predicts various intriguing physical properties. Evidence of a TLL has been observed as power-law behaviour in electronic transport on various types of one-dimensional conductor3,4,5. However, these measurements, which rely on d.c. transport involving electron tunneling processes, cannot identify the long-awaited hallmark of charge fractionalization, in which an injection of elementary charge e from a non-interacting lead is divided into the non-trivial effective charge e* and the remainder, ee* (refs 6, 7, 8). Here, we report time-resolved transport measurements9 on an artificial TLL composed of coupled integer quantum Hall edge channels10, in which we successfully identify single charge fractionalization processes. A wave packet of charge q incident from a non-interacting region breaks up into several fractionalized charge wave packets at the edges of the artificial TLL, from which transport eigenmodes can be evaluated directly. These results are informative for elucidating the nature of TLLs and low-energy excitations in the edge channels11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up for the time-resolved measurement of charge fractionalization.
Figure 2: Observed charge wave packets injected and extracted from the TLL regions.
Figure 3: Gate voltage and filling factor dependence of the TLL parameters.
Figure 4: Microscopic model of Coulomb interaction with electrostatic capacitances.

References

  1. 1

    Tomonaga, S. Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544–569 (1950).

    Article  Google Scholar 

  2. 2

    Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154–1162 (1963).

    CAS  Article  Google Scholar 

  3. 3

    Tarucha, S., Honda, T. & Saku, T. Reduction of quantized conductance at low temperatures observed in 2 to 10 µm-long quantum wires. Solid State Commun. 94, 413–418 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Grayson, M., Tsui, D. C., Pfeiffer, L. N., West, K. W. & Chang, A. M. Continuum of chiral Luttinger liquids at the fractional quantum Hall edge. Phys. Rev. Lett. 80, 1062–1065 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Safi, I. & Schulz, H. J. Transport in an inhomogeneous interacting one-dimensional system. Phys. Rev. B 52, R17040–R17043 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Pham, K-V., Gabay, M. & Lederer, P. Fractional excitations in the Luttinger liquid. Phys. Rev. B 61, 16397–16422 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Imura, K-I., Pham, K-V., Lederer, P. & Piéchon, F. Conductance of one-dimensional quantum wires. Phys. Rev. B 66, 035313 (2002).

    Article  Google Scholar 

  9. 9

    Kamata, H., Ota, T., Muraki, K. & Fujisawa, T. Voltage-controlled group velocity of edge magnetoplasmon in the quantum Hall regime. Phys. Rev. B 81, 085329 (2010).

    Article  Google Scholar 

  10. 10

    Berg, E., Oreg, Y., Kim, E-A. & von Oppen, F. Fractional charges on an integer quantum Hall edge. Phys. Rev. Lett. 102, 236402 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Venkatachalam, V., Hart, S., Pfeiffer, L., West, K. & Yacoby, A. Local thermometry of neutral modes on the quantum Hall edge. Nature Phys. 8, 676–681 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Steinberg, H. et al. Charge fractionalization in quantum wires. Nature Phys. 4, 116–119 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Ashoori, R. C., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894–3897 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Fetter, A. L. Edge magnetoplasmons in a bounded two-dimensional electron fluid. Phys. Rev B 32, 7676–7684 (1985).

    CAS  Article  Google Scholar 

  18. 18

    Volkov, V. A. & Mikhailov, S. A. Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems. Sov. Phys. JETP 67, 1639–1653 (1988).

    Google Scholar 

  19. 19

    Talyanskii, V. I. et al. Spectroscopy of a two-dimensional electron gas in the quantum-Hall-effect regime by use of low-frequency edge magnetoplasmons. Phys. Rev. B 46, 12427–12432 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Hashisaka, M. et al. Distributed-element circuit model of edge magnetoplasmon transport. Phys. Rev. B 88, 235409 (2013).

    Article  Google Scholar 

  21. 21

    Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Kumada, N., Kamata, H. & Fujisawa, T. Edge magnetoplasmon transport in gated and ungated quantum Hall systems. Phys. Rev. B 84, 045314 (2011).

    Article  Google Scholar 

  23. 23

    Lee, H. C. & Yang, S.-R. E. Spin-charge separation in quantum Hall edge liquids. Phys. Rev. B 56, R15529–R15532 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Bocquillon, E. et al. Separation of neutral and charge modes in one-dimensional chiral edge channels. Nature Commun. 4, 1839 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Roulleau, P. et al. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys. Rev. Lett. 100, 126802 (2008).

    Article  Google Scholar 

  26. 26

    Gabelli, J. et al. Relaxation time of a chiral quantum R–L circuit. Phys. Rev. Lett. 98, 166806 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Larkin, I. A. & Davies, J. H. Edge of the two-dimensional electron gas in a gated heterostructure. Phys. Rev. B 52, R5535–R5538 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K-I. Imura and M. Nakamura for discussions and M. Ueki for experimental support. This work was partially supported by Grants-in-Aid for Scientific Research (21000004, 11J09248) and the Global Center of Excellence Program from the MEXT of Japan through the ‘Nanoscience and Quantum Physics’ Project of the Tokyo Institute of Technology.

Author information

Affiliations

Authors

Contributions

H.K. performed the experiments, analysed the data and wrote the manuscript. T.F. supervised the research. K.M. grew the wafer. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to H. Kamata or T. Fujisawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 868 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamata, H., Kumada, N., Hashisaka, M. et al. Fractionalized wave packets from an artificial Tomonaga–Luttinger liquid. Nature Nanotech 9, 177–181 (2014). https://doi.org/10.1038/nnano.2013.312

Download citation

Further reading