Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice

Subjects

Abstract

Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species—vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of SPNs.
Figure 2: Comparison of photoacoustic properties of SPN1 with SWNTs (1.2 × 150 nm) and GNRs (15 × 40 nm).
Figure 3: In vivo and ex vivo photoacoustic and fluorescent imaging of lymph nodes using SPN1.
Figure 4: In vitro characterization of RSPN for ROS sensing.
Figure 5: In vivo photoacoustic imaging of ROS generation from a mouse model of acute oedema using RSPN.

Similar content being viewed by others

References

  1. Mei, J., Diao, Y., Appleton, A. L., Fang, L. & Bao, Z. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

    Article  CAS  Google Scholar 

  2. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  CAS  Google Scholar 

  3. Sokolov, A. N., Tee, B. C. K., Bettinger, C. J., Tok, J. B. H. & Bao, Z. N. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 45, 361–371 (2012).

    Article  CAS  Google Scholar 

  4. Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulovic, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    Article  CAS  Google Scholar 

  5. Sanghvi, A. B., Miller, K. P., Belcher, A. M. & Schmidt, C. E. Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nature Mater. 4, 496–502 (2005).

    Article  CAS  Google Scholar 

  6. Wu, C. & Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 52, 3086–3109 (2013).

    Article  CAS  Google Scholar 

  7. Zhu, C., Liu, L., Yang, Q., Lv, F. & Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 112, 4687–4735 (2012).

    Article  CAS  Google Scholar 

  8. Xiong, L., Shuhendler, A. J. & Rao, J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nature Commun. 3, 1193 (2012).

    Article  Google Scholar 

  9. Pu, K. Y. & Liu, B. Fluorescent conjugated polyelectrolytes for bioimaging. Adv. Funct. Mater. 21, 3408–3423 (2011).

    Article  CAS  Google Scholar 

  10. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  Google Scholar 

  11. Ntziachristos, V. & Razansky, D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110, 2783–2794 (2010).

    Article  CAS  Google Scholar 

  12. Kim, C., Favazza, C. & Wang, L. H. V. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev. 110, 2756–2782 (2010).

    Article  CAS  Google Scholar 

  13. Eghtedari, M. et al. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 7, 1914–1918 (2007).

    Article  CAS  Google Scholar 

  14. De la Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 3, 557–562 (2008).

    Article  CAS  Google Scholar 

  15. Kim, J. W., Galanzha, E. I., Shashkov, E. V., Moon, H. M. & Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotech. 4, 688–694 (2009).

    Article  CAS  Google Scholar 

  16. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater. 10, 324–332 (2011).

    Article  CAS  Google Scholar 

  17. Akers, W. J. et al. Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. ACS Nano 5, 173–182 (2011).

    Article  CAS  Google Scholar 

  18. Xia, Y. N. et al. Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 44, 914–924 (2011).

    Article  CAS  Google Scholar 

  19. Jokerst, J. V., Cole, A. J., Van de Sompel, D. & Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6, 10366–10377 (2012).

    Article  CAS  Google Scholar 

  20. Lovell, J. F., Liu, T. W., Chen, J. & Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

    Article  CAS  Google Scholar 

  21. Razgulin, A., Ma, N. & Rao, J. H. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem. Soc. Rev. 40, 4186–4216 (2011).

    Article  CAS  Google Scholar 

  22. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nature Med. 9, 123–128 (2003).

    Article  CAS  Google Scholar 

  23. Melancon, M. P., Zhou, M. & Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44, 947–956 (2011).

    Article  CAS  Google Scholar 

  24. Levi, J. et al. Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin. Cancer Res. 19, 1494–1502 (2013).

    Article  CAS  Google Scholar 

  25. Levi, J. et al. Design, synthesis, and imaging of an activatable photoacoustic probe. J. Am. Chem. Soc. 132, 11264–11269 (2010).

    Article  CAS  Google Scholar 

  26. Zhang, Y., Hong, H. & Cai, W. Photoacoustic imaging. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.top065508 (2011).

  27. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  Google Scholar 

  28. Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Rev. Drug Discov. 6, 662–680 (2007).

    Article  CAS  Google Scholar 

  29. Muhlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

    Article  Google Scholar 

  30. Pramanik, M., Swierczewska, M., Green, D., Sitharaman, B. & Wang, L. V. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 14, 034018 (2009).

  31. Link, S., Burda, C., Nikoobakht, B. & El-Sayed, M. A. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B 104, 6152–6163 (2000).

    Article  CAS  Google Scholar 

  32. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  33. Nakajima, M., Takeda, M., Kobayashi, M., Suzuki, S. & Ohuchi, N. Nano-sized fluorescent particles as new tracers for sentinel node detection: experimental model for decision of appropriate size and wavelength. Cancer Sci. 96, 353–356 (2005).

    Article  CAS  Google Scholar 

  34. Oushiki, D. et al. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc. 132, 2795–2801 (2010).

    Article  CAS  Google Scholar 

  35. Kim, G., Lee, Y. E., Xu, H., Philbert, M. A. & Kopelman, R. Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells. Anal. Chem. 82, 2165–2169 (2010).

    Article  CAS  Google Scholar 

  36. Winterbourn, C. C. & Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328 (1999).

    Article  CAS  Google Scholar 

  37. Zhao, G. et al. Pivotal role of reactive oxygen species in differential regulation of lipopolysaccharide-induced prostaglandins production in macrophages. Mol. Pharmacol. 83, 167–178 (2013).

    Article  CAS  Google Scholar 

  38. Guimard, N. K., Gomez, N. & Schmidt, C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007).

    Article  CAS  Google Scholar 

  39. Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chem. Biol. 7, 504–511 (2011).

    Article  CAS  Google Scholar 

  40. Nagano, T. Bioimaging probes for reactive oxygen species and reactive nitrogen species. J. Clin. Biochem. Nutr. 45, 111–124 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of the SCi3 Core Facility. This work was supported by the National Institutes of Health (grants 2R01DK099800-06 and R21CA138353A2), the Stanford University National Cancer Institute (NCI) CCNE-T grant (U54CA151459) and In Vivo Cellular and Molecular Imaging Center (ICMIC) grant (P50CA114747). A.J.S. thanks the Susan G. Komen for the Cure for fellowship support. J.V.J. acknowledges a grant from NCI (5R25CA11868) and was supported by a postdoctoral fellowship (PF-13-098-01–CCE) from the American Cancer Society. J.M. and Z.B. acknowledge support from Air Force Office of Scientific Research for support of the synthesis of the polymers (FA9550-12-1-0190).

Author information

Authors and Affiliations

Authors

Contributions

K.P., A.J.S. and J.R. conceived of the experiments. K.P. synthesized and characterized the nanoparticles. K.P. and A.J.S. performed in vitro and in vivo experiments. J.J. and S.S.G. provided GNRs, SWNTs and technical assistance with photoacoustic imaging. J.M. and Z.B. synthesized and provided SP2. K.P., A.J.S. and J.R. analysed the data and wrote the manuscript. All authors commented and contributed to the manuscript.

Corresponding author

Correspondence to Jianghong Rao.

Ethics declarations

Competing interests

S.S.G. serves on the board of Endra and serves as a consultant for Visualsonics, both manufacturers of small animal photoacoustic imaging equipment.

Supplementary information

Supplementary information

Supplementary information (PDF 4227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, K., Shuhendler, A., Jokerst, J. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature Nanotech 9, 233–239 (2014). https://doi.org/10.1038/nnano.2013.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing