Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing


Managing energy dissipation is critical to the scaling of current microelectronics1,2,3 and to the development of novel devices that use quantum coherence to achieve enhanced functionality4. To this end, strategies are needed to tailor the electron–phonon interaction, which is the dominant mechanism for cooling non-equilibrium (‘hot’) carriers5,6. In experiments aimed at controlling the quantum state7,8,9,10,11, this interaction causes decoherence that fundamentally disrupts device operation12,13. Here, we show a contrasting behaviour, in which strong electron–phonon scattering can instead be used to generate a robust mode for electrical conduction in GaAs quantum point contacts, driven into extreme non-equilibrium by nanosecond voltage pulses. When the amplitude of these pulses is much larger than all other relevant energy scales, strong electron–phonon scattering induces an attraction between electrons in the quantum-point-contact channel, which leads to the spontaneous formation of a narrow current filament and to a renormalization of the electronic states responsible for transport. The lowest of these states coalesce to form a sub-band separated from all others by an energy gap larger than the source voltage. Evidence for this renormalization is provided by a suppression of heating-related signatures in the transient conductance, which becomes pinned near 2e2/h (e, electron charge; h, Planck constant) for a broad range of source and gate voltages. This collective non-equilibrium mode is observed over a wide range of temperature (4.2–300 K) and may provide an effective means to manage electron–phonon scattering in nanoscale devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient response of QPC-C.
Figure 2: Different regimes of nonlinear transport and their manifestation in the conductance.
Figure 3: Sub-band renormalization under high bias.


  1. Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nature Mater. 6, 810–812 (2007).

    Article  CAS  Google Scholar 

  2. Pop, E. Energy dissipation and transport in nanoscale devices. Nano. Res. 3, 147–169 (2010).

    Article  CAS  Google Scholar 

  3. Chang, L. et al. Practical strategies for power-efficient computing technologies. Proc. IEEE 98, 215–236 (2010).

    Article  Google Scholar 

  4. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  CAS  Google Scholar 

  5. Ferry, D. K. Semiconductor Transport (Taylor & Francis, 2001).

    Google Scholar 

  6. Lundstrom, M. Fundamentals of Carrier Transport (Cambridge Univ. Press, 2009).

    Google Scholar 

  7. Khrapai, V. S., Ludwig, S., Kotthaus, J. P., Tranitz, H. P. & Wegscheider, W. Double-dot quantum ratchet driven by an independently biased quantum point contact. Phys. Rev. Lett. 97, 176803 (2006).

    Article  CAS  Google Scholar 

  8. Schinner, G. J., Tranitz, H. P., Wegscheider, W., Kotthaus, J. P. & Ludwig, S. Phonon-mediated nonequilibrium interaction between nanoscale devices. Phys. Rev. Lett. 102, 186801 (2009).

    Article  CAS  Google Scholar 

  9. Gasser, U. et al. Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts. Phys. Rev. B 79, 035303 (2009).

    Article  Google Scholar 

  10. Harbusch, D., Taubert, D., Tranitz, H. P., Wegscheider, W. & Ludwig, S. Phonon-mediated versus Coulombic backaction in quantum dot circuits. Phys. Rev. Lett. 104, 196801 (2010).

    Article  CAS  Google Scholar 

  11. Granger, G. et al. Quantum interference and phonon-mediated backaction in lateral quantum-dot circuits. Nature Phys. 8, 522–527 (2012).

    Article  CAS  Google Scholar 

  12. Lin, J. J. & Bird, J. P. Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. J. Phys. 14, R501–R596 (2002).

    CAS  Google Scholar 

  13. Ferry, D. K., Goodnick, S. M. & Bird, J. P. Transport in Nanostructures (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  14. Van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  CAS  Google Scholar 

  15. Wharam, D. A. et al. One-dimensional transport and the quantization of the ballistic resistance. J. Phys. C 21, L209–L214 (1988).

    Article  Google Scholar 

  16. Micolich, A. P. What lurks below the last plateau: experimental studies of the 0.7 × 2e2/h conductance anomaly in one-dimensional systems. J. Phys. 23, 443201 (2011).

    CAS  Google Scholar 

  17. Zhitenev, N. B, Haug, R. J., v. Klitzing, K. & Eberl, K. Time-resolved measurements of transport in edge channels. Phys. Rev. Lett. 71, 2292–2295 (1993).

    Article  CAS  Google Scholar 

  18. Zhitenev, N. B., Haug, R. J., v. Klitzing, K. & Eberl, K. Linear and nonlinear waves in edge channels. Phys. Rev. B 52, 11277–11283 (1995).

    Article  CAS  Google Scholar 

  19. Van Wees, B. J. et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts. Phys. Rev. B 43, 12431–12453 (1991).

    Article  Google Scholar 

  20. Heiblum, M., Nathan, M. I., Thomas, D. C. & Knoedler, C. M. Direct observation of ballistic transport in GaAs. Phys. Rev. Lett. 55, 2200–2203 (1985).

    Article  CAS  Google Scholar 

  21. Heiblum, M., Galbi, D. & Weckwerth, M. Observation of single-optical-phonon emission. Phys. Rev. Lett. 62, 1057–1060 (1989).

    Article  CAS  Google Scholar 

  22. Sivan, U., Heiblum, M. & Umbach, C. P. Hot ballistic transport and phonon emission in a two-dimensional electron gas. Phys. Rev. Lett. 63, 992–995 (1989).

    Article  CAS  Google Scholar 

  23. Dzurak, A. S. et al. Two-dimensional electron-gas heating and phonon emission by hot ballistic electrons. Phys. Rev. B 45, 6309–6312 (1992).

    Article  CAS  Google Scholar 

  24. Datta, S., Assad, F. & Lundstrom, M. S. The silicon MOSFET from a transmission viewpoint. Superlatt. Microstruct. 23, 771–780 (1998).

    Article  CAS  Google Scholar 

  25. Soltanolkotabi, M., Bennis, G. L. & Gupta, R. Temperature dependence of the thermal diffusivity of GaAs in the 100–305 K range measured by the pulsed photothermal displacement technique. J. Appl. Phys. 85, 794–798 (1999).

    Article  CAS  Google Scholar 

  26. Beenakker, C. W. J. & van Houten, H. in Solid State Physics (eds Ehrenreich, H. & Turnbull, D.) Vol. 44, 1–228 (Academic, 1991).

    Google Scholar 

  27. Topinka, M. A. et al. Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000).

    Article  CAS  Google Scholar 

  28. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    Article  CAS  Google Scholar 

  29. Glazman, L. I., Hekking, F. W. J. & Larkin, A. L. Spin-charge separation and the Kondo effect in an open quantum dot. Phys. Rev. Lett. 83, 1830–1833 (1999).

    Article  CAS  Google Scholar 

  30. Pines, D. & Bohm, D. A collective description of electron interactions: II. Collective vs. individual particle aspects of the interactions. Phys. Rev. 85, 338–353 (1952).

    Article  CAS  Google Scholar 

  31. Naser, B. et al. 50-Ohm-matched system for low-temperature measurements of the time-resolved conductance of low-dimensional semiconductors. Rev. Sci. Instrum. 76, 113905 (2005)

    Article  Google Scholar 

Download references


This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (award DE-FG02-04ER46180). The work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration (contract DE-AC04-94AL85000). J.E.H. acknowledges support from the National Science Foundation (DMR-0907150).

Author information

Authors and Affiliations



J.L. fabricated the devices and performed the measurements described in this paper. He also collaborated with J.P.B. on data analysis. J.E.H. performed the theoretical analysis and collaborated with J.P.B. on the writing of the manuscript. J.S. constructed the transient-measurement system and J.S. and J.P.B. designed the experiment. J.L.R. grew the high-quality semiconductor wafer, while S.X. performed magneto-characterization of its low-temperature electrical properties.

Corresponding authors

Correspondence to J. E. Han or J. P. Bird.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 821 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Han, J., Xiao, S. et al. Formation of a protected sub-band for conduction in quantum point contacts under extreme biasing. Nature Nanotech 9, 101–105 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research