A surface-bound molecule that undergoes optically biased Brownian rotation

Abstract

Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors1,2, gyroscopes3 and valves4, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia5,6. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions7. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism8,9 in which photoexcitation of the rotor strongly inhibits its diffusion rate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and ideal orientation at an interface of molecular device components 1–3.
Figure 2: Binding of 1 with perpendicular orientation to a glass surface.
Figure 3: Viscosity dependence and optical bias of rotational diffusion of rotors 2 and 3.

References

  1. 1

    Van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

  2. 2

    Perera, U. G. E. et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nature Nanotech. 8, 46–51 (2013).

  3. 3

    Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

  4. 4

    Nguyen, T. et al. A reversible molecular valve. Proc. Natl Acad. Sci. USA 102, 10029–10034 (2005).

  5. 5

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

  6. 6

    Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

  7. 7

    Barrell, M. J., Campaña, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

  8. 8

    Jánossy, I. Optical reorientation in dye-doped liquid crystals. J. Nonlin. Opt. Phys. Mater. 8, 361–377 (1999).

  9. 9

    Kreuzer, M., Benkler, E., Paparo, D., Casillo, G. & Marrucci, L. Molecular orientation by photoinduced modulation of rotational mobility. Phys. Rev. E 68, 011701 (2003).

  10. 10

    Michl, J. & Sykes, E. C. H. Molecular rotors and motors: recent advances and future challenges. ACS Nano 3, 1042–1048 (2009).

  11. 11

    Coronado, E., Gaviña, P. & Tatay, S. Catenanes and threaded systems: from solution to surfaces. Chem. Soc. Rev. 38, 1674–1689 (2009).

  12. 12

    Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008).

  13. 13

    Toyota, S. Rotational isomerism involving acetylene carbon. Chem. Rev. 110, 5398–5424 (2010).

  14. 14

    Böhmer, M. & Enderlein, J. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B 20, 554–559 (2003).

  15. 15

    Deres, A. et al. The origin of heterogeneity of polymer dynamics near the glass temperature as probed by defocused imaging. Macromolecules 44, 9703–9709 (2011).

  16. 16

    Uji-i, H. et al. Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer 47, 2511–2518 (2006).

  17. 17

    Lu, C-Y. & Vanden Bout, D. A. Effect of finite trajectory length on the correlation function analysis of single molecule data. J. Chem. Phys. 125, 124701 (2006).

  18. 18

    Mackowiak, S. A. & Kaufman, L. J. When the heterogeneous appears homogeneous: discrepant measures of heterogeneity in single-molecule observables. J. Phys. Chem. Lett. 2, 438–442 (2011).

  19. 19

    Wakelin, S. & Bagshaw, R. A prism combination for near isotropic fluorescence excitation by total internal reflection. J. Microsc. 209, 143–148 (2003).

  20. 20

    Osborne, M. A., Balasubramaniam, S., Furey, W. S. & Klenerman, D. Optically biased diffusion of single molecules studied by confocal fluorescence microscopy. J. Phys. Chem. B 102, 3160–3167 (1998).

  21. 21

    Manzo, C., Paparo, D. & Marrucci, L. Photoinduced random molecular reorientation by non-radiative energy relaxation: an experimental test. Phys. Rev. E 70, 051702 (2004).

  22. 22

    Flors, C. et al. Energy and electron transfer in ethynylene bridged perylene diimide multichromophores. J. Phys. Chem. C 111, 4861–4870 (2007).

  23. 23

    Li, C. et al. Rainbow perylene monoimides: easy control of optical properties. Chem. Eur. J. 15, 878–884 (2009).

  24. 24

    Andrew, T. L. & Swager, T. M. Thermally polymerized rylene nanoparticles. Macromolecules 44, 2276–2281 (2011).

  25. 25

    Margineanu, A. et al. Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Biophys. J. 93, 2877–2891 (2007).

  26. 26

    Okuyama, O., Cockett, M. C. R. & Kimura, K. Observation of torsional motion in the ground-state cation of jet-cooled tolane by two-color threshold photoelectron spectroscopy. J. Chem. Phys. 97, 1649–1654 (1992).

  27. 27

    Daniels, C. R., Reznik, C. & Landes, C. F. Dye diffusion at surfaces: charge matters. Langmuir 26, 4807–4812 (2010).

  28. 28

    Kirmaier, C. et al. Excited-state photodynamics of perylene-porphyrin dyads. 5. Tuning light-harvesting characteristics via perylene substituents, connection motif, and three-dimensional architecture. J. Phys. Chem. B 114, 14249–14264 (2010).

  29. 29

    Karageorgiev, P. et al. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Mater. 4, 699–703 (2005).

  30. 30

    Nishimura, D. et al. Single-molecule imaging of rotaxanes immobilized on glass substrates: observation of rotary movement. Angew. Chem. Int. Ed. 120, 6077–6079 (2008).

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013/ERC grant agreement 291593 FLUOROCODE), from the Flemish government in the form of a long-term structural funding ‘Methusalem’ grant (METH/08/04 CASAS), from the ‘Fonds voor Wetenschapplijk Onderzoek Vlaanderen’ (FWO grants G0413.10, G0697.11 and G0197.11), from the Hercules Foundation (HER/08/021) and from the Federal Science Policy of Belgium (IAP-PAI P7/05 ‘Functional Supramolecular Systems’) and the UNIK research initiative of the Danish Ministry of Science, Technology and Innovation (grant 09-065274).

Author information

K.M., A.H., J.H. and F.D.S. devised the project. S.M., H.N., C.L. and A.B. synthesized the molecules. J.A.H., A.D., S.R., H.U. and T.V. carried out optical measurements. J.E. and H.U. wrote the analysis software. J.A.H. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Correspondence to Hiroshi Uji-i or Johan Hofkens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1430 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hutchison, J., Uji-i, H., Deres, A. et al. A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotech 9, 131–136 (2014). https://doi.org/10.1038/nnano.2013.285

Download citation

Further reading